login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321266
Smallest positive number for which the square cannot be written as sum of distinct squares of any subset of previous terms.
5
1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 32, 34, 48, 64, 68, 96, 128, 136, 192, 256, 272, 384, 512, 544, 768, 1024, 1088, 1536, 2048, 2176, 3072, 4096, 4352, 6144, 8192, 8704, 12288, 16384, 17408, 24576, 32768, 34816, 49152, 65536, 69632, 98304, 131072, 139264
OFFSET
1,2
COMMENTS
a(n)^2 = A226076(n) forms a sum-free sequence.
LINKS
FORMULA
a(n) = 2 * a(n-3) for n > 9 (conjectured).
EXAMPLE
0^2 = 0 (sum of squares of the empty set).
1^2 cannot be written as sum of squares of the empty set, so a(1)=1.
Suppose we determined all terms up to a(7)=12:
13^2 = 12^2 + 4^2 + 3^2,
14^2 = 12^2 + 6^2 + 4^2,
15^2 = 12^2 + 8^2 + 4^2 + 1^2.
16^2 cannot be written as sum of squares of distinct smaller terms, hence a(8)=16.
PROG
(Python)
def findSum(nopt, tgt, a, smax, pwr):
....if nopt==0:
........return [] if tgt==0 else None
....if tgt<0 or tgt>smax[nopt-1]:
........return None
....rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
....if rv!=None:
........rv.append(a[nopt-1])
....else:
........rv=findSum(nopt-1, tgt, a, smax, pwr)
....return rv
def A321266(n):
....POWER=2 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
....while len(a)<n:
........while True:
............x+=1
............lst=findSum(len(a), x**POWER, a, smax, POWER)
............if lst==None:
................break
............rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
............print(" %d^%d = %s"%(x, POWER, rhs))
........a.append(x) ; sumpwr+=x**POWER
........print("a(%d) = %d"%(len(a), x))
........smax.append(sumpwr)
....return a[-1]
CROSSREFS
Square root of A226076.
Other powers: A321290 (3), A321291 (4), A321292 (5), A321293 (6).
Sequence in context: A171966 A034893 A187448 * A018662 A240557 A326712
KEYWORD
nonn
AUTHOR
Bert Dobbelaere, Nov 01 2018
STATUS
approved