login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest positive number for which the square cannot be written as sum of distinct squares of any subset of previous terms.
5

%I #13 Dec 08 2018 17:25:25

%S 1,2,3,4,6,8,12,16,17,24,32,34,48,64,68,96,128,136,192,256,272,384,

%T 512,544,768,1024,1088,1536,2048,2176,3072,4096,4352,6144,8192,8704,

%U 12288,16384,17408,24576,32768,34816,49152,65536,69632,98304,131072,139264

%N Smallest positive number for which the square cannot be written as sum of distinct squares of any subset of previous terms.

%C a(n)^2 = A226076(n) forms a sum-free sequence.

%H Bert Dobbelaere, <a href="/A321266/b321266.txt">Table of n, a(n) for n = 1..89</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a>

%F a(n) = 2 * a(n-3) for n > 9 (conjectured).

%e 0^2 = 0 (sum of squares of the empty set).

%e 1^2 cannot be written as sum of squares of the empty set, so a(1)=1.

%e Suppose we determined all terms up to a(7)=12:

%e 13^2 = 12^2 + 4^2 + 3^2,

%e 14^2 = 12^2 + 6^2 + 4^2,

%e 15^2 = 12^2 + 8^2 + 4^2 + 1^2.

%e 16^2 cannot be written as sum of squares of distinct smaller terms, hence a(8)=16.

%o (Python)

%o def findSum(nopt, tgt, a, smax, pwr):

%o ....if nopt==0:

%o ........return [] if tgt==0 else None

%o ....if tgt<0 or tgt>smax[nopt-1]:

%o ........return None

%o ....rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)

%o ....if rv!=None:

%o ........rv.append(a[nopt-1])

%o ....else:

%o ........rv=findSum(nopt-1,tgt, a, smax, pwr)

%o ....return rv

%o def A321266(n):

%o ....POWER=2 ; x=0 ; a=[] ; smax=[] ; sumpwr=0

%o ....while len(a)<n:

%o ........while True:

%o ............x+=1

%o ............lst=findSum(len(a), x**POWER, a, smax, POWER)

%o ............if lst==None:

%o ................break

%o ............rhs = " + ".join(["%d^%d"%(i,POWER) for i in lst])

%o ............print(" %d^%d = %s"%(x,POWER,rhs))

%o ........a.append(x) ; sumpwr+=x**POWER

%o ........print("a(%d) = %d"%(len(a),x))

%o ........smax.append(sumpwr)

%o ....return a[-1]

%Y Square root of A226076.

%Y Other powers: A321290 (3), A321291 (4), A321292 (5), A321293 (6).

%K nonn

%O 1,2

%A _Bert Dobbelaere_, Nov 01 2018