login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226076
Lexicographically least sequence of squares that are sum-free.
1
1, 4, 9, 16, 36, 64, 144, 256, 289, 576, 1024, 1156, 2304, 4096, 4624, 9216, 16384, 18496, 36864, 65536, 73984, 147456, 262144, 295936, 589824, 1048576, 1183744, 2359296, 4194304, 4734976, 9437184, 16777216, 18939904, 37748736, 67108864, 75759616, 150994944
OFFSET
1,2
COMMENTS
A sum-free sequence has no term that is the sum of a subset of its previous terms. There are an infinite number of sequences that are subsets of the squares and sum-free. This sequence is lexicographically the first.
FORMULA
Conjecture: a(n) = 4*a(n-3) for n>9. G.f.: -x*(33*x^8 +112*x^7 +80*x^6 +28*x^5 +20*x^4 +12*x^3 +9*x^2 +4*x +1) / (4*x^3 -1). - Colin Barker, May 28 2013
EXAMPLE
a(10)=576 as 576 is the next square after a(9)=289 that cannot be formed from distinct sums of a(1),...,a(9) (1,4,9,16,36,64,144,256,289).
MATHEMATICA
memberQ[n1_, k1_] := If[Select[IntegerPartitions[n1^2, Length[k1], k1], Sort@#==Union@# &]=={}, False, True]; k={1}; n=1; While[Length[k]<20, (If[!memberQ[n, k], k=Append[k, n^2]]; n++)]; k
CROSSREFS
Cf. A225947.
Sequence in context: A106575 A025620 A117218 * A357753 A272711 A356880
KEYWORD
nonn
AUTHOR
Frank M Jackson, May 25 2013
EXTENSIONS
More terms from Colin Barker, May 28 2013
a(33)-a(37) from Donovan Johnson, Dec 17 2013
STATUS
approved