login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226075
Expansion of (eta(q) * eta(q^11))^2 + 2 * (eta(q^2) * eta(q^22))^2 in powers of q.
1
1, 0, -1, -2, 1, 0, -2, 4, -2, 0, 1, 2, 4, 0, -1, -4, -2, 0, 0, -2, 2, 0, -1, -4, -4, 0, 5, 4, 0, 0, 7, 0, -1, 0, -2, 4, 3, 0, -4, 4, -8, 0, -6, -2, -2, 0, 8, 4, -3, 0, 2, -8, -6, 0, 1, -8, 0, 0, 5, 2, 12, 0, 4, 8, 4, 0, -7, 4, 1, 0, -3, -8, 4, 0, 4, 0, -2, 0
OFFSET
1,4
LINKS
FORMULA
a(n) is multiplicative with a(11^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) if p != 11.
G.f. is a period 1 Fourier series which satisfies f(-1 / (22 t)) = 22 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(4*n + 2) = 0. a(4*n) = -2 * A006571(n). a(2^n) = A090132(n). a(3^n) = A214733(n+1).
EXAMPLE
G.f. = q - q^3 - 2*q^4 + q^5 - 2*q^7 + 4*q^8 - 2*q^9 + q^11 + 2*q^12 + 4*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^11])^2 + 2 q^2 ( QPochhammer[ q^2] QPochhammer[ q^22])^2, {q, 0, n}]; (* Michael Somos, Apr 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2 + 2 * x * (eta(x^2 + A) * eta(x^22 + A))^2, n))};
(Sage) CuspForms( Gamma0(22), 2, prec=79).0;
(Magma) Basis( CuspForms( Gamma0(22), 2), 79)[1];
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, May 25 2013
STATUS
approved