|
|
A214733
|
|
a(n) = -a(n-1) - 3*a(n-2) with n>1, a(0)=0, a(1)=1.
|
|
5
|
|
|
0, 1, -1, -2, 5, 1, -16, 13, 35, -74, -31, 253, -160, -599, 1079, 718, -3955, 1801, 10064, -15467, -14725, 61126, -16951, -166427, 217280, 282001, -933841, 87838, 2713685, -2977199, -5163856, 14095453, 1396115, -43682474, 39494129, 91553293, -210035680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The sequence a(n) is conjugate with A110523 by the following alternative relations: either ((-1 + i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 + i*sqrt(11))/2, or ((-1 - i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 - i*sqrt(11))/2 (see also comments to A110523, where these relations and many other facts on a(n) is presented).
Apart from signs, the Lucas U(P=1,Q=3)-sequence. - R. J. Mathar, Oct 24 2012
This is the Lucas U(-1, 3) sequence. (V_n(-1, 3))^2 + 11*(U_n(-1, 3))^2 = 4*Q^n = 4*3^n. For the special case where |U_n(-1, 3)| = 1, then, by the Lucas sequence identity U_2*n = U_n*V_n, we have (U_2*n(-1, 3))^2 + 11 = 4*3^n, true for n = 1, 2, 5, U_n = 1, -1, 1 and U_2*n = -1, 5, -31. E.g., (-31)^2 + 11 = 972 = 4*3^5. - Raphie Frank, Dec 09 2015
|
|
REFERENCES
|
R. Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.
|
|
LINKS
|
|
|
FORMULA
|
a(n+2) = - a(n+1) - 3a(n).
a(n) = (i*sqrt(11)/11)*(((-1 - i*sqrt(11))/2)^n - ((-1 + i*sqrt(11))/2)^n).
G.f.: x/(1 + x + 3*x^2).
G.f.: Q(0) -1, where Q(k) = 1 - 3*x^2 - (k+2)*x + x*(k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
|
|
MATHEMATICA
|
LinearRecurrence[{-1, -3}, {0, 1}, 40] (* T. D. Noe, Jul 30 2012 *)
|
|
PROG
|
(Magma) [n le 2 select n-1 else -Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 10 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|