login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214733 a(n) = -a(n-1) - 3*a(n-2) with n>1, a(0)=0, a(1)=1. 5
0, 1, -1, -2, 5, 1, -16, 13, 35, -74, -31, 253, -160, -599, 1079, 718, -3955, 1801, 10064, -15467, -14725, 61126, -16951, -166427, 217280, 282001, -933841, 87838, 2713685, -2977199, -5163856, 14095453, 1396115, -43682474, 39494129, 91553293, -210035680 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The sequence a(n) is conjugate with A110523 by the following alternative relations: either ((-1 + i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 + i*sqrt(11))/2, or ((-1 - i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 - i*sqrt(11))/2 (see also comments to A110523, where these relations and many other facts on a(n) is presented).
Apart from signs, the Lucas U(P=1,Q=3)-sequence. - R. J. Mathar, Oct 24 2012
This is the Lucas U(-1, 3) sequence. (V_n(-1, 3))^2 + 11*(U_n(-1, 3))^2 = 4*Q^n = 4*3^n. For the special case where |U_n(-1, 3)| = 1, then, by the Lucas sequence identity U_2*n = U_n*V_n, we have (U_2*n(-1, 3))^2 + 11 = 4*3^n, true for n = 1, 2, 5, U_n = 1, -1, 1 and U_2*n = -1, 5, -31. E.g., (-31)^2 + 11 = 972 = 4*3^5. - Raphie Frank, Dec 09 2015
REFERENCES
R. Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.
LINKS
Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
Wikipedia, Lucas sequence
FORMULA
a(n+2) = - a(n+1) - 3a(n).
a(n) = (i*sqrt(11)/11)*(((-1 - i*sqrt(11))/2)^n - ((-1 + i*sqrt(11))/2)^n).
G.f.: x/(1 + x + 3*x^2).
G.f.: Q(0) -1, where Q(k) = 1 - 3*x^2 - (k+2)*x + x*(k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
MATHEMATICA
LinearRecurrence[{-1, -3}, {0, 1}, 40] (* T. D. Noe, Jul 30 2012 *)
PROG
(PARI) concat(0, Vec(1/(1+x+3*x^2)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
(Magma) [n le 2 select n-1 else -Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 10 2015
CROSSREFS
Sequence in context: A186361 A197365 A121579 * A106852 A352010 A350016
KEYWORD
sign,easy
AUTHOR
Roman Witula, Jul 27 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 07:26 EDT 2023. Contains 365537 sequences. (Running on oeis4.)