The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294834 Numerators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1). 3
 1, 15, 599, 23035, 2900123, 30112021, 1117973277, 96393597197, 6084978910411, 67042215785861, 4094947551504521, 274661892011507657, 20068897076286721961, 1586702257063428405419, 26992510145660626515763, 54017546409271099350401, 5242487768036648180534897, 180077149085745155963315797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The corresponding denominators are given in A294835. For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,1]. The limit of the series is V(6,1) = lim_{n -> oo} V(6,1;n) = (3/10)*log(3) + (2/5)*log(2) + (1/10)*Pi*sqrt(3). The value is 1.150982368094676386... given in A275792. REFERENCES Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193. LINKS G. C. Greubel, Table of n, a(n) for n = 0..600 Eric Weisstein's World of Mathematics, Digamma Function FORMULA a(n) = numerator(V(6,1;n)) with V(6,1;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 1)) = Sum_{k=0..n} 1/A051866(k+1) = (1/5)*Sum_{k=0..n} (1/(k + 1/6) - 1/(k + 1)) = (-Psi(1/6) + Psi(n+7/6) - (gamma + Psi(n+2)))/5 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620. EXAMPLE The rationals V(6,1;n), n >= 0, begin: 1, 15/14, 599/546, 23035/20748, 2900123/2593500, 30112021/26799500, 1117973277/991581500, 96393597197/85276009000, 6084978910411/5372388567000, 67042215785861/59096274237000, 4094947551504521/3604872728457000, ... V(6,1;10^6) = 1.150982200 (Maple, 10 digits) to be compared with the ten digits 1.150982368 obtained from V(6,1) given in A275792. MATHEMATICA Table[Numerator[Sum[1/((k + 1)*(6*k + 1)), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Aug 30 2018 *) PROG (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 1)))); \\ Michel Marcus, Nov 21 2017 (Magma) [Numerator((&+[1/((k + 1)*(6*k + 1)): k in [0..n]])): n in [0..50]]; // G. C. Greubel, Aug 30 2018 CROSSREFS Cf. A001620, A051866, A275792, A294512, A294835. Sequence in context: A179895 A343074 A232291 * A276489 A243227 A215899 Adjacent sequences: A294831 A294832 A294833 * A294835 A294836 A294837 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Nov 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 05:35 EDT 2024. Contains 371697 sequences. (Running on oeis4.)