login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} n^(2*n) * x^n / (1 + n^2*x)^n.
2

%I #20 Nov 29 2014 12:56:46

%S 1,1,15,602,46620,5921520,1118557440,294293759760,102896614941120,

%T 46150861752777600,25832386565857872000,17651395149921751680000,

%U 14460364581345685626624000,13990151265412450143375360000,15782226575197809064309171200000,20533602558350213132577801792768000

%N G.f.: Sum_{n>=0} n^(2*n) * x^n / (1 + n^2*x)^n.

%C Compare to: Sum_{n>=0} n^n * x^n / (1 + n*x)^n = 1 + Sum_{n>=1} (n+1)!/2 * x^n.

%F a(n) = Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n) for n>0 with a(0)=1.

%F a(n) = (n-1)! * Stirling2(2*n+1, n) for n>0 with a(0)=1.

%F a(n) = (2*n+1)!/n * [x^(2*n+1)] (exp(x) - 1)^n for n>0 with a(0)=1.

%F a(n) ~ 2^(2*n+1) * n^(2*n) / (sqrt(1-c) * exp(2*n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - _Vaclav Kotesovec_, Nov 05 2014

%e G.f.: A(x) = 1 + x + 15*x^2 + 602*x^3 + 46620*x^4 + 5921520*x^5 +...

%e where

%e A(x) = 1 + x/(1+x) + 4^2*x^2/(1+4*x)^2 + 9^3*x^3/(1+9*x)^3 + 16^4*x^4/(1+16*x)^4 + 25^5*x^5/(1+25*x)^5 + 36^6*x^6/(1+36*x)^6 + 49^7*x^7/(1+49*x)^7 +...

%t Flatten[{1, Table[(n-1)! * StirlingS2[2*n+1, n],{n,1,20}]}] (* _Vaclav Kotesovec_, Nov 05 2014 *)

%o (PARI) {a(n)=polcoeff( sum(m=0, n, m^(2*m)*x^m/(1+m^2*x +x*O(x^n))^m), n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=if(n==0,1,sum(k=0, n-1, (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n)))}

%o for(n=0,20,print1(a(n),", "))

%o (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}

%o {a(n) = if(n==0,1, (n-1)! * Stirling2(2*n+1, n) )}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = if(n==0,1,(2*n+1)!/n * polcoeff(((exp(x + x*O(x^(2*n+1))) - 1)^n), 2*n+1))}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A187742, A247238.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 21 2014