The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296164 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^n. 3
 1, 1, 3, 10, 35, 131, 498, 1919, 7459, 29170, 114653, 452552, 1792754, 7124040, 28386081, 113372690, 453743907, 1819317153, 7306575042, 29386858821, 118348662525, 477188876405, 1926137365804, 7782398551661, 31472648050930, 127384123318906, 515978637418884 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 Eric Weisstein's World of Mathematics, Schur's Partition Theorem FORMULA a(n) = [x^n] Product_{k>=1} 1/((1 - x^(6*k-1))*(1 - x^(6*k-5)))^n. a(n) ~ c * d^n / sqrt(n), where d = 4.129321588075726742506... and c = 0.25764349816429874323... - Vaclav Kotesovec, May 18 2018 MATHEMATICA Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(3 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}] Table[SeriesCoefficient[Product[1/((1 - x^(6 k - 1)) (1 - x^(6 k - 5)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}] CROSSREFS Cf. A003105, A058484, A058539, A103262, A255526, A296163. Sequence in context: A303730 A149037 A228769 * A151046 A221130 A084781 Adjacent sequences:  A296161 A296162 A296163 * A296165 A296166 A296167 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 17:12 EST 2021. Contains 349424 sequences. (Running on oeis4.)