OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Eric Weisstein's World of Mathematics, Schur's Partition Theorem
FORMULA
a(n) = [x^n] Product_{k>=1} 1/((1 - x^(6*k-1))*(1 - x^(6*k-5)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.129321588075726742506... and c = 0.25764349816429874321... - Vaclav Kotesovec, May 18 2018
MATHEMATICA
Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(3 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[Product[1/((1 - x^(6 k - 1)) (1 - x^(6 k - 5)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
(* Calculation of constants {d, c}: *) With[{k = 3}, {1/r, Sqrt[QPochhammer[-1, (r*s)^k] / (2*Pi*(r^2*s*Derivative[0, 2][QPochhammer][-1, r*s] - k^2*(r*s)^(2*k) * Derivative[0, 2][QPochhammer][-1, (r*s)^k] - k*(1 + k)*(r*s)^k * Derivative[0, 1][QPochhammer][-1, (r*s)^k]))]} /. FindRoot[{s == QPochhammer[-1, r*s]/QPochhammer[-1, (r*s)^k], QPochhammer[-1, (r*s)^k] + k*(r*s)^k*Derivative[0, 1][QPochhammer][-1, (r*s)^k] == r*Derivative[0, 1][QPochhammer][-1, r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 06 2017
STATUS
approved