The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221130 a(n) = 2^(2*n - 1) + n. 3
 3, 10, 35, 132, 517, 2054, 8199, 32776, 131081, 524298, 2097163, 8388620, 33554445, 134217742, 536870927, 2147483664, 8589934609, 34359738386, 137438953491, 549755813908, 2199023255573, 8796093022230, 35184372088855, 140737488355352, 562949953421337 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n ) = the smallest numbers w such that numbers w, w+1,…, w+k-1 for k=1,2,…n are numbers of form h*2^m + m, where 1<=h <2^m, m = natural number (see A221129). a(5) = 517 because numbers 517, 518, 519, 520, 521 are numbers of presented form. 517 = 16*2^5 + 5, 518 = 8*2^6 + 6, 519 = 4*2^7 + 7, 520 = 2*2^8 + 8, 521 = 1*2^9 + 9 (that is, numbers (2^(n-k))*(2^(n+k-1))+n+k-1, for k=1,2,,...n). LINKS Jaroslav Krizek, Table of n, a(n) for n = 1..53 Index entries for linear recurrences with constant coefficients, signature (6,-9,4) FORMULA a(n+1) = a(n) + 3*2^(2*n-1)+1 = a(n) + 6*4^(n-1)+1 = a(n) + 2^(2*n+1) - 2^(2*n-1) + 1 = a(n) + A199116(n-1). G.f. -x*(3-8*x+2*x^2) / ( (4*x-1)*(x-1)^2 ). - R. J. Mathar, Jan 17 2013 EXAMPLE a(5)=2^(2*5-1)+5=517. CROSSREFS Cf. A221129, A199116. Sequence in context: A361768 A296164 A151046 * A084781 A151047 A008984 Adjacent sequences: A221127 A221128 A221129 * A221131 A221132 A221133 KEYWORD nonn AUTHOR Jaroslav Krizek, Jan 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:45 EDT 2024. Contains 371906 sequences. (Running on oeis4.)