login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361768
Expansion of o.g.f. A(x) = 1/F(oo,x) where F(oo,x) is the limit of the process F(n,x) = (F(n-1,x)^n - n^2*x^n)^(1/n) for n > 0, starting with F(0,x) = 1.
3
1, 1, 3, 10, 35, 130, 499, 1966, 7893, 32168, 132690, 552784, 2322094, 9823572, 41811597, 178903031, 769044018, 3319438968, 14380154747, 62500478960, 272448124262, 1190815525727, 5217483053052, 22910925764270, 100811396881651, 444418225515884, 1962579128519888
OFFSET
0,3
COMMENTS
a(n+1)/a(n) tends to 4.6131... - Vaclav Kotesovec, Mar 30 2023
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 35*x^4 + 130*x^5 + 499*x^6 + 1966*x^7 + 7893*x^8 + 32168*x^9 + 132690*x^10 + 552784*x^11 + ...
where A(x) = 1/F(oo,x) where F(oo,x) is the limit of the following process.
Start with F(0,x) = 1, and continue F(n,x) = (F(n-1,x)^n - n^2*x^n)^(1/n) for n > 0, like so:
F(0,x) = 1
F(1,x) = (F(0,x)^1 - 1^2*x^1)^(1/1)
F(2,x) = (F(1,x)^2 - 2^2*x^2)^(1/2)
F(3,x) = (F(2,x)^3 - 3^2*x^3)^(1/3)
F(4,x) = (F(3,x)^4 - 4^2*x^4)^(1/4)
F(5,x) = (F(4,x)^5 - 5^2*x^5)^(1/5)
...
then A(x) is the limit of 1/F(n,x) as n approaches infinity:
1/F(1,x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...
1/F(2,x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 + ...
1/F(3,x) = 1 + x + 3*x^2 + 10*x^3 + 31*x^4 + 105*x^5 + 363*x^6 + ...
1/F(4,x) = 1 + x + 3*x^2 + 10*x^3 + 35*x^4 + 125*x^5 + 463*x^6 + ...
1/F(5,x) = 1 + x + 3*x^2 + 10*x^3 + 35*x^4 + 130*x^5 + 493*x^6 + ...
...
PROG
(PARI) {a(n) = my(A=1, F); F=1; for(m=1, n, F = (F^m - m^2*x^m +x*O(x^(n+1)))^(1/m)); A = 1/F; H=A; polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A303730 A149037 A228769 * A296164 A151046 A221130
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 29 2023
STATUS
approved