The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296167 Triangle read by rows: T(n,k) is the number of circular compositions of n with length k such that no two adjacent parts are equal (1 <= k <= n). 0
 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 3, 2, 1, 0, 0, 0, 1, 3, 4, 3, 0, 0, 0, 0, 1, 4, 6, 4, 2, 1, 0, 0, 0, 1, 4, 8, 11, 4, 1, 0, 0, 0, 0, 1, 5, 10, 13, 10, 3, 0, 0, 0, 0, 0, 1, 5, 14, 22, 18, 10, 2, 1, 0, 0, 0, 0, 1, 6, 16, 29, 32, 20, 6, 1, 0, 0, 0, 0, 0, 1, 6, 20, 44, 50, 40, 18, 4, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS By "circular compositions" here we mean equivalence classes of compositions with parts on a circle such that two compositions are equivalent if one is a cyclic shift of the other. We may call them "circular Carlitz compositions". The formula below for T(n,k) involves indicator functions of conditions because unfortunately circular compositions of length 1 are considered Carlitz by most authors (even though, strictly speaking, they are not since the single number in such a composition is "next to itself" if we go around the circle). To prove that the two g.f.'s below are equal to each other, use the geometric series formula, change the order of summations where it is necessary, and use the result Sum_{n >= 1} (phi(n)/n)*log(1 + x^n) = Sum_{n >= 1} (phi(n)/n)*log(1 - x^(2*n)) - Sum_{n >= 1} (phi(n)/n)*log(1 - x^n) = -x^2/(1 - x^2) + x/(1 - x) = x/(1 - x^2). LINKS P. Hadjicostas, Cyclic, dihedral and symmetrical Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5. FORMULA T(n,k) = [k = 1] + (1/k)*Sum_{d | gcd(n,k)} phi(d)*A293595(n/d, k/d) * [k/d <> 1], where [ ] is the Iverson Bracket. G.f.: Sum_{n,k >= 1} T(n,k)*x^n*y^k = x*y/(1-x) - Sum_{s>=1} (phi(s)/s)*f(x^s,y^s), where f(x,y) = log(1 - Sum_{n >= 1} x^n*y/(1 + x^n*y)) + Sum_{n >= 1} log(1 + x^n*y). G.f.: -Sum_{s >= 1} (x*y)^(2*s + 1)/(1-x^(2*s + 1)) - Sum_{s >= 1} (phi(s)/s)*g(x^s,y^s), where g(x,y) = log(1 + Sum_{n >= 1} (-x*y)^n/(1 - x^n)). EXAMPLE Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:   1;   1,  0;   1,  1,  0;   1,  1,  0,  0;   1,  2,  0,  0,  0;   1,  2,  2,  1,  0,  0;   1,  3,  2,  1,  0,  0,  0;   1,  3,  4,  3,  0,  0,  0,  0;   1,  4,  6,  4,  2,  1,  0,  0,  0;   1,  4,  8, 11,  4,  1,  0,  0,  0,  0;   ... Case n=6: The included circular compositions are: k=1: 6;                                => T(6,1) = 1 k=2: 15, 24;                           => T(6,2) = 2 k=3: 123, 321;                         => T(6,3) = 2 k=4: 1212;                             => T(6,4) = 1 k=5: none;                             => T(6,5) = 0 k=6: none;                             => T(6,6) = 0 MATHEMATICA nmax = 14; gf (* of A293595 *) = Sum[x^(2j) y^2/(1 + x^j y), {j, 1, nmax}] + Sum[x^j y/(1 + x^j y)^2, {j, 1, nmax}]/(1 - Sum[x^j y/(1 + x^j y), {j, 1, nmax}]) + O[x]^(nmax + 1) + O[y]^(nmax + 1) // Normal // Expand; A293595[n_, k_] := SeriesCoefficient[gf, {x, 0, n}, {y, 0, k}]; T[n_, k_] := Boole[k == 1] + (1/k) Sum[EulerPhi[d] A293595[n/d, k/d]* Boole[k/d != 1], {d, Divisors[GCD[n, k]]}]; Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2020 *) CROSSREFS Row sums are in A106369. Cf. A003242, A239327, A291941, A293595. Sequence in context: A276205 A244966 A079100 * A244233 A227345 A123262 Adjacent sequences:  A296164 A296165 A296166 * A296168 A296169 A296170 KEYWORD nonn,tabl AUTHOR Petros Hadjicostas, Dec 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 22:50 EST 2021. Contains 349590 sequences. (Running on oeis4.)