login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239327
Number of palindromic Carlitz compositions of n.
5
1, 1, 1, 1, 2, 3, 2, 5, 5, 7, 10, 14, 14, 25, 26, 42, 48, 75, 79, 132, 142, 226, 252, 399, 432, 704, 760, 1223, 1336, 2143, 2328, 3759, 4079, 6564, 7150, 11495, 12496, 20135, 21874, 35215, 38310, 61639, 67018, 107912, 117298, 188839, 205346, 330515, 359350, 578525, 628951
OFFSET
0,5
COMMENTS
A palindromic composition is a composition that is identical to its own reverse. There are 2^floor(n/2) palindromic compositions. A Carlitz composition has no two consecutive equal parts (A003242). This sequence enumerates compositions that are both palindromic and Carlitz.
Also the number of odd-length integer compositions of n into parts that are alternately unequal and equal (n > 0). The unordered version (partitions) is A053251. - Gus Wiseman, Feb 26 2022
REFERENCES
S. Heubach and T. Mansour, Compositions of n with parts in a set, Congr. Numer. 168 (2004), 127-143.
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2010, page 67.
LINKS
Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.5.
FORMULA
G.f.: (1 + Sum_{j>=1} x^j*(1-x^j)/(1+x^(2*j))) / (1 - Sum_{j>=1} x^(2*j)/(1+x^(2*j))).
a(n) ~ c / r^n, where r = 0.7558768372943356987836792261127971643747976345582722756032673... is the root of the equation sum_{j>=1} x^(2*j)/(1+x^(2*j)) = 1, c = 0.5262391407444644722747255167331403939384758635340487280277... if n is even and c = 0.64032989654153238794063877354074732669441634551692765196197... if n is odd. - Vaclav Kotesovec, Aug 22 2014
EXAMPLE
a(9) = 7 because we have: 9, 1+7+1, 2+5+2, 4+1+4, 1+3+1+3+1, 2+1+3+1+2, 1+2+3+2+1. 2+3+4 is not counted because it is not palindromic. 3+3+3 is not counted because it has consecutive equal parts.
MAPLE
b:= proc(n, i) option remember; `if`(i=0, 0, `if`(n=0, 1,
add(`if`(i=j, 0, b(n-j, j)), j=1..n)))
end:
a:= n-> `if`(n=0, 1, add(b(i, n-2*i), i=0..n/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 16 2014
MATHEMATICA
nn=50; CoefficientList[Series[(1+Sum[x^j(1-x^j)/(1+x^(2j)), {j, 1, nn}])/(1-Sum[x^(2j)/(1+x^(2j)), {j, 1, nn}]), {x, 0, nn}], x]
(* or *)
Table[Length[Select[Level[Map[Permutations, Partitions[n]], {2}], Apply[And, Table[#[[i]]==#[[Length[#]-i+1]], {i, 1, Floor[Length[#]/2]}]]&&Apply[And, Table[#[[i]]!=#[[i+1]], {i, 1, Length[#]-1}]]&]], {n, 0, 20}]
PROG
(PARI) a(n) = polcoeff((1 + sum(j=1, n, x^j*(1-x^j)/(1+x^(2*j)) + O(x*x^n))) / (1 - sum(j=1, n, x^(2*j)/(1+x^(2*j)) + O(x*x^n))), n); \\ Andrew Howroyd, Oct 12 2017
CROSSREFS
Carlitz compositions are counted by A003242.
Palindromic compositions are counted by A016116.
The unimodal case is A096441.
Sequence in context: A133775 A099043 A318677 * A021047 A249492 A113649
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 16 2014
STATUS
approved