Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Mar 13 2022 18:59:53
%S 1,1,1,1,2,3,2,5,5,7,10,14,14,25,26,42,48,75,79,132,142,226,252,399,
%T 432,704,760,1223,1336,2143,2328,3759,4079,6564,7150,11495,12496,
%U 20135,21874,35215,38310,61639,67018,107912,117298,188839,205346,330515,359350,578525,628951
%N Number of palindromic Carlitz compositions of n.
%C A palindromic composition is a composition that is identical to its own reverse. There are 2^floor(n/2) palindromic compositions. A Carlitz composition has no two consecutive equal parts (A003242). This sequence enumerates compositions that are both palindromic and Carlitz.
%C Also the number of odd-length integer compositions of n into parts that are alternately unequal and equal (n > 0). The unordered version (partitions) is A053251. - _Gus Wiseman_, Feb 26 2022
%D S. Heubach and T. Mansour, Compositions of n with parts in a set, Congr. Numer. 168 (2004), 127-143.
%D S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2010, page 67.
%H Alois P. Heinz, <a href="/A239327/b239327.txt">Table of n, a(n) for n = 0..5000</a>
%H Petros Hadjicostas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Hadjicostas/hadji5.html">Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.5.
%F G.f.: (1 + Sum_{j>=1} x^j*(1-x^j)/(1+x^(2*j))) / (1 - Sum_{j>=1} x^(2*j)/(1+x^(2*j))).
%F a(n) ~ c / r^n, where r = 0.7558768372943356987836792261127971643747976345582722756032673... is the root of the equation sum_{j>=1} x^(2*j)/(1+x^(2*j)) = 1, c = 0.5262391407444644722747255167331403939384758635340487280277... if n is even and c = 0.64032989654153238794063877354074732669441634551692765196197... if n is odd. - _Vaclav Kotesovec_, Aug 22 2014
%e a(9) = 7 because we have: 9, 1+7+1, 2+5+2, 4+1+4, 1+3+1+3+1, 2+1+3+1+2, 1+2+3+2+1. 2+3+4 is not counted because it is not palindromic. 3+3+3 is not counted because it has consecutive equal parts.
%p b:= proc(n, i) option remember; `if`(i=0, 0, `if`(n=0, 1,
%p add(`if`(i=j, 0, b(n-j, j)), j=1..n)))
%p end:
%p a:= n-> `if`(n=0, 1, add(b(i, n-2*i), i=0..n/2)):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 16 2014
%t nn=50;CoefficientList[Series[(1+Sum[x^j(1-x^j)/(1+x^(2j)),{j,1,nn}])/(1-Sum[x^(2j)/(1+x^(2j)),{j,1,nn}]),{x,0,nn}],x]
%t (* or *)
%t Table[Length[Select[Level[Map[Permutations,Partitions[n]],{2}],Apply[And,Table[#[[i]]==#[[Length[#]-i+1]],{i,1,Floor[Length[#]/2]}]]&&Apply[And,Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1}]]&]],{n,0,20}]
%o (PARI) a(n) = polcoeff((1 + sum(j=1, n, x^j*(1-x^j)/(1+x^(2*j)) + O(x*x^n))) / (1 - sum(j=1, n, x^(2*j)/(1+x^(2*j)) + O(x*x^n))), n); \\ _Andrew Howroyd_, Oct 12 2017
%Y Carlitz compositions are counted by A003242.
%Y Palindromic compositions are counted by A016116.
%Y The unimodal case is A096441.
%Y Cf. A053251, A122129, A122130, A351003, A351006, A351007.
%K nonn
%O 0,5
%A _Geoffrey Critzer_, Mar 16 2014