|
|
A122130
|
|
Expansion of f(-x^4, -x^16) / psi(-x) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
|
|
10
|
|
|
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 34, 41, 50, 61, 73, 88, 106, 126, 150, 179, 211, 249, 294, 345, 404, 473, 551, 642, 747, 865, 1002, 1159, 1336, 1539, 1771, 2033, 2331, 2670, 3052, 3485, 3976, 4527, 5150, 5854, 6642, 7530, 8529, 9647, 10902
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of odd-length alternately strict integer partitions of n + 1, i.e., partitions y such that y_i != y_{i+1} for all odd i. For example, the a(1) = 1 through a(9) = 7 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (321) (322) (422) (432)
(411) (421) (431) (522)
(511) (521) (531)
(611) (621)
(711)
(32211)
The even-length version is A351008. Including even-length partitions appears to give A122129. Swapping strictly and weakly decreasing relations gives A351595. The constant instead of strict version is A351594.
(End)
|
|
REFERENCES
|
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(b), p. 591.
G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.8). MR0858826 (88b:11063)
|
|
LINKS
|
Table of n, a(n) for n=0..53.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
|
|
FORMULA
|
Expansion of f(x, x^9) / f(-x^2, -x^3) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^8, -x^12)) in powers of x where f(-x) : = f(-x, -x^2) and f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, ...].
G.f.: Sum_{k>0} x^(k^2 - 1) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2k-1))).
G.f.: 1/(Product_{k>0} (1-x^(2k-1))(1-x^(20k-8))(1-x^(20k-12))).
a(n) ~ (3-sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
|
|
EXAMPLE
|
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
G.f. = q^31 + q^71 + q^111 + 2*q^151 + 2*q^191 + 3*q^231 + 4*q^271 + 5*q^311 + ...
|
|
MATHEMATICA
|
nmax = 100; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(20*k-8))*(1-x^(20*k-12))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[x, x^2] QPochhammer[x^8, x^20] QPochhammer[x^12, x^20]), {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20] QPochhammer[x^20] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // Simplify; (* Michael Somos, Nov 12 2016 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, polcoeff( sum(k=1, sqrtint(n+1), x^(k^2-1) / prod(i=1, 2*k-1, 1 - x^i, 1 + x * O(x^(n-k^2+1)))), n))};
|
|
CROSSREFS
|
Cf. A035363, A035457, A053251, A122129, A122134, A122135, A351005, A351008.
Sequence in context: A304883 A280663 A052816 * A003073 A123946 A002569
Adjacent sequences: A122127 A122128 A122129 * A122131 A122132 A122133
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michael Somos, Aug 21 2006, corrected Aug 21 2006
|
|
STATUS
|
approved
|
|
|
|