login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003073
A nonlinear recurrence.
(Formerly M0282)
1
1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 47, 59, 76, 95, 120, 154, 191, 241, 310, 383, 483, 620, 767, 968, 1242, 1535, 1937, 2486, 3071, 3875, 4972, 6143, 7752, 9946, 12287, 15505, 19894, 24575, 31011, 39788, 49151, 62024, 79578, 98303
OFFSET
0,3
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 208.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
MATHEMATICA
A003073[n_]:= If[Mod[n, 3]==0, Floor[3*2^Floor[n/3]/2] - Boole[Floor[n/3] >0], If[Mod[n, 3]==2, 2*Floor[17*2^Floor[n/3]/14] +Boole[Floor[n/3] == 2], Floor[53*2^Floor[n/3]/28] - Boole[Floor[n/3] >2] ]];
Table[A003073[n], {n, 0, 60}] (* G. C. Greubel, Nov 03 2022 *)
PROG
(PARI) a(n)=local(k); k=n\3; if(n%3==0, 3*2^k\2-(k>0), if(n%3==2, 2*(17*2^k\14)+(k==2), 53*2^k\28-(k>2))) /* Michael Somos, May 04 2000 */
(SageMath)
def A003073(n):
if (n%3==0): return ((3*2^(n//3))//2) - int((n//3)>0)
elif (n%3==2): return 2*((17*2^(n//3))//14) + int((n//3)==2)
else: return ((53*2^(n//3))//28) - int((n//3)>2)
[A003073(n) for n in range(61)] # G. C. Greubel, Nov 03 2022
CROSSREFS
Sequence in context: A280663 A052816 A122130 * A123946 A002569 A129528
KEYWORD
nonn
EXTENSIONS
More terms from Michael Somos, May 04 2000
STATUS
approved