The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003073 A nonlinear recurrence. (Formerly M0282) 1
 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 47, 59, 76, 95, 120, 154, 191, 241, 310, 383, 483, 620, 767, 968, 1242, 1535, 1937, 2486, 3071, 3875, 4972, 6143, 7752, 9946, 12287, 15505, 19894, 24575, 31011, 39788, 49151, 62024, 79578, 98303 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 208. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 MATHEMATICA A003073[n_]:= If[Mod[n, 3]==0, Floor[3*2^Floor[n/3]/2] - Boole[Floor[n/3] >0], If[Mod[n, 3]==2, 2*Floor[17*2^Floor[n/3]/14] +Boole[Floor[n/3] == 2], Floor[53*2^Floor[n/3]/28] - Boole[Floor[n/3] >2] ]]; Table[A003073[n], {n, 0, 60}] (* G. C. Greubel, Nov 03 2022 *) PROG (PARI) a(n)=local(k); k=n\3; if(n%3==0, 3*2^k\2-(k>0), if(n%3==2, 2*(17*2^k\14)+(k==2), 53*2^k\28-(k>2))) /* Michael Somos, May 04 2000 */ (SageMath) def A003073(n): if (n%3==0): return ((3*2^(n//3))//2) - int((n//3)>0) elif (n%3==2): return 2*((17*2^(n//3))//14) + int((n//3)==2) else: return ((53*2^(n//3))//28) - int((n//3)>2) [A003073(n) for n in range(61)] # G. C. Greubel, Nov 03 2022 CROSSREFS Sequence in context: A280663 A052816 A122130 * A123946 A002569 A129528 Adjacent sequences: A003070 A003071 A003072 * A003074 A003075 A003076 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS More terms from Michael Somos, May 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 06:09 EST 2024. Contains 370240 sequences. (Running on oeis4.)