login
A003076
n-th digit after decimal point of square root of n.
3
0, 0, 1, 2, 0, 6, 9, 3, 2, 0, 1, 5, 7, 9, 4, 6, 0, 4, 6, 2, 1, 8, 6, 3, 8, 0, 0, 4, 2, 4, 8, 5, 9, 9, 0, 4, 0, 0, 3, 2, 1, 2, 4, 3, 9, 8, 9, 0, 1, 0, 4, 3, 4, 3, 5, 7, 0, 8, 4, 3, 7, 7, 5, 7, 0, 6, 2, 6, 0, 5, 7, 0, 0, 3, 6, 4, 3, 0, 2, 5, 9, 0, 3, 8, 8, 8, 4, 0, 1, 8, 5, 4, 7, 3, 9, 6, 0, 7, 0, 2, 0, 6, 6, 5, 8
OFFSET
0,4
COMMENTS
Regarded as a decimal fraction, 0.01206932015794604621863800... is likely to be an irrational number.
LINKS
FORMULA
From M. F. Hasler, Jun 22 2024: (Start)
a(n) = A000196(n*100^n) % 10, where n % 10 = A010879(n) is the final digit of n.
a(n) = 0 for all n in A000290 (but not only those). This explains that the value 0 is slightly more frequent than the other values. (End)
EXAMPLE
sqrt(0) = 0.0, so a(0) = 0 with the convention that the 0th digit after the decimal point is the digit before the decimal point,
sqrt(1) = 1.0, where the first digit after the decimal point is a(1) = 0,
sqrt(2) = 1.4142135..., where the 2nd decimal digit is a(2) = 1,
sqrt(3) = 1.7320508..., where the 3rd decimal digit is a(3) = 2,
sqrt(4) = 2.0000000..., where the 4th decimal digit is a(4) = 0,
sqrt(5) = 2.2360679..., where the 5th decimal digit is a(5) = 6,
sqrt(6) = 2.4494897..., where the 6th decimal digit is a(6) = 9, etc.
From M. F. Hasler, Jun 22 2024: (Start)
For the frequency of the respective digits among the first 10^k terms, we have:
k : 0's 1's 2's 3's 4's 5's 6's 7's 8's 9's
----+---------------------------------------------------------------
1 : 4, 1, 2, 1, 0, 0, 1, 0, 0, 1;
2 : 22, 6, 9, 11, 12, 7, 8, 8, 9, 8;
3 : 126, 106, 105, 94, 95, 90, 86, 96, 92, 110;
4 : 1097, 1026, 1037, 1031, 984, 979, 1000, 956, 922, 968;
5 : 10320, 10053, 9926, 10122, 9855, 9985, 9934, 9857, 9855, 10093. (End)
MATHEMATICA
Join[{0}, Array[ Function[ n, RealDigits[ N[ Sqrt[ n ], n+6 ] ]// (#[ [ 1, #[ [ 2 ] ]+n ] ])& ], 110 ]]
Table[ Floor[ Mod[10^n*Sqrt[n], 10]], {n, 0, 104}] (* Robert G. Wilson v, Jun 17 2002 *)
PROG
(PARI) A003076(n)=sqrtint(n*100^n)%10;
apply(A003076, [0..99]) \\ M. F. Hasler, Jun 22 2024
CROSSREFS
Cf. A071901.
Sequence in context: A358167 A348189 A372911 * A175478 A011123 A087464
KEYWORD
nonn,base,easy
EXTENSIONS
Extension and program from Olivier Gérard, Oct 15 1997
STATUS
approved