login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087464
Generalized multiplicative Jacobsthal sequence.
3
0, 0, 2, 0, 6, 10, 0, 42, 86, 0, 342, 682, 0, 2730, 5462, 0, 21846, 43690, 0, 174762, 349526, 0, 1398102, 2796202, 0, 11184810, 22369622, 0, 89478486, 178956970, 0, 715827882, 1431655766, 0, 5726623062, 11453246122, 0, 45812984490, 91625968982, 0
OFFSET
0,3
COMMENTS
2^n = A087462(n) + A087463(n) + a(n) provides a decomposition of Pascal's triangle.
FORMULA
a(n) = Sum_{k=0..n} if(mod(n*k, 3)=2, 1, 0) * C(n, k).
a(n) = (2/9)*(2^n-3*0^n+2*(-1)^n)*(1-cos(2*Pi*n/3)).
From Colin Barker, Nov 02 2015: (Start)
a(n) = 7*a(n-3)+8*a(n-6) for n>5.
G.f.: 2*x^2*(2*x^3-3*x^2-1) / ((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)).
(End)
MATHEMATICA
LinearRecurrence[{0, 0, 7, 0, 0, 8}, {0, 0, 2, 0, 6, 10}, 40] (* Harvey P. Dale, Aug 31 2015 *)
PROG
(PARI) concat(vector(2), Vec(2*x^2*(2*x^3-3*x^2-1)/((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)) + O(x^100))) \\ Colin Barker, Nov 02 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 08 2003
STATUS
approved