login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087465
Rank array R of 3/2 read by antidiagonals; this array is the dispersion of the complement of the sequence given by r(n) = r(n-1) + 1 + floor(3n/2) for n>=1, with r(0) = 1; that is, A077043(n+1).
7
1, 2, 3, 4, 5, 7, 6, 8, 10, 12, 9, 11, 14, 16, 19, 13, 15, 18, 21, 24, 27, 17, 20, 23, 26, 30, 33, 37, 22, 25, 29, 32, 36, 40, 44, 48, 28, 31, 35, 39, 43, 47, 52, 56, 61, 34, 38, 42, 46, 51, 55, 60, 65, 70, 75, 41, 45, 50, 54, 59, 64, 69, 74, 80, 85, 91, 49, 53, 58, 63, 68, 73
OFFSET
0,2
COMMENTS
The sequence is a permutation of the positive integers and the array is a transposable dispersion.
Let T(n,k) be the rectangular version of the array at A036561, with northwest corner as shown here:
1 2 4 8 16 32
3 6 12 24 48 96
9 18 36 72 144 288
27 54 108 216 432 864
Then R(n,k) is the rank of T(n,k) when all the numbers in {T(n,k)} are jointly ranked. - Clark Kimberling, Jan 25 2018
LINKS
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
FORMULA
R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.
EXAMPLE
Northwest corner of R:
1 2 4 6 9 13 17 22
3 5 8 11 15 20 25 31
7 10 14 18 23 29 35 42
12 16 21 26 32 39 46 54
19 24 30 36 43 51 59 68
27 33 40 47 55 64 73 83
37 44 52 60 69 79 89 100
Let t=3/2; then R(i,j) = rank of (j,i) when all nonnegative integer pairs (a,b) are ranked by the relation << defined as follows: (a,b) << (c,d) if a + b*t < c + d*t, and also (a,b) << (c,d) if a + b*t = c + d*t and b < d. Thus R(2,1) = 10 is the rank of (1,2) in the list (0,0) << (1,0) << (0,1) << (2,0) << (1,1) << (3,0) << (0,2) << (2,1) << (4,0) << (1,2).
MATHEMATICA
r = 20; r1 = 12; (*r=# rows of T, r1=# rows to show*);
c = 20; c1 = 12; (*c=# cols of T, c1=# cols to show*);
s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[3 n/2]; u = Table[s[n], {n, 0, 100}]
v = Complement[Range[Max[u]], u]; f[n_] := v[[n]]; Table[f[n], {n, 1, 30}]
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; w[i_, j_] := rows[[i, j]];
TableForm[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A087465 array *)
Flatten[Table[w[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A087465 sequence *)
TableForm[Table[w[i, 1] + w[1, j] + (i - 1)*(j - 1) - 1, {i, 1, 10}, {j, 1, 10}]] (* A087465 array, by formula *)
CROSSREFS
Cf. A087466, A087468, A087483, A007780 (row 1), A077043 (column 1).
Sequence in context: A088750 A056018 A191673 * A247714 A283734 A377136
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 09 2003
EXTENSIONS
Updated by Clark Kimberling, Sep 23 2014
STATUS
approved