login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122133
Number of different polyominoes with maximum area of the convex hull.
2
1, 1, 1, 3, 5, 11, 9, 26, 22, 53, 36, 93, 64, 151, 94, 228, 143, 329, 195, 455, 271, 611, 351, 798, 460, 1021, 574, 1281, 722, 1583, 876, 1928, 1069, 2321, 1269, 2763, 1513, 3259, 1765, 3810, 2066, 4421, 2376, 5093, 2740, 5831, 3114, 6636, 3547, 7513, 3991
OFFSET
1,4
LINKS
K. Bezdek, P. Brass and H. Harborth, Maximum convex hulls of connected systems of segments and of polyominoes, Beiträge Algebra Geom., Vol. 35(1) (1994), pp. 37-43.
S. Kurz, Polyominoes with maximum convex hull, Diploma thesis, Bayreuth (2004).
FORMULA
a(n) = (n^3 - 2*n^2 + 4*n)/16 if n mod 4 = 0;
a(n) = (n^3 - 2*n^2 + 13*n + 20)/32 if n mod 4 = 1;
a(n) = (n^3 - 2*n^2 + 4*n + 8)/16 if n mod 4 = 2;
a(n) = (n^3 - 2*n^2 + 5*n + 8)/32 if n mod 4 = 3.
G.f.: (1 + x - x^2 - x^3 + 2*x^5 + 8*x^6 + 2*x^7 + 4*x^8 + 2*x^9 - x^10 + x^12)/((1-x^2)^2*(1-x^4)^2).
From Luce ETIENNE, Aug 14 2019: (Start)
a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n) = 2*a(n-2) + a(n-4) - 4*a(n-6) + a(n-8) + 2*a(n-10) - a(n-12).
a(n) = (3*n^3 - 6*n^2 + 17*n + 22 + (n^3 - 2*n^2 - n - 6)*(-1)^n - 4*(4*cos(n*Pi/2) - (2*n+3)*sin(n*Pi/2)))/64. (End)
E.g.f.: (1/64)*(-exp(-x)*(6 - 2*x - x^2 + x^3) + exp(x)*(22 + 14*x + 3*x^2 + 3*x^3) - 4*(4*cos(x) - 2*x*cos(x) - 3*sin(x))). - Stefano Spezia, Aug 14 2019
MAPLE
A122133 := proc(n)
if modp(n, 4)= 0 then
(n^3-2*n^2+4*n)/16 ;
elif modp(n, 4)= 1 then
(n^3-2*n^2+13*n+20)/32 ;
elif modp(n, 4)= 2 then
(n^3-2*n^2+4*n+8)/16 ;
else
(n^3-2*n^2+5*n+8)/32 ;
fi;
end proc: # R. J. Mathar, May 19 2019
PROG
(PARI) Vec(x*(1+x-x^2+x^3+2*x^4+4*x^5+2*x^6+5*x^7+2*x^8+x^9)/((1-x)^4*(1+x)^4*(1+x^2)^2) + O(x^80)) \\ Colin Barker, Oct 14 2016
CROSSREFS
Sequence in context: A105603 A264987 A170835 * A273377 A065019 A071328
KEYWORD
nonn,easy
AUTHOR
Sascha Kurz, Aug 21 2006
STATUS
approved