Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Aug 23 2019 04:02:41
%S 1,1,1,3,5,11,9,26,22,53,36,93,64,151,94,228,143,329,195,455,271,611,
%T 351,798,460,1021,574,1281,722,1583,876,1928,1069,2321,1269,2763,1513,
%U 3259,1765,3810,2066,4421,2376,5093,2740,5831,3114,6636,3547,7513,3991
%N Number of different polyominoes with maximum area of the convex hull.
%H Colin Barker, <a href="/A122133/b122133.txt">Table of n, a(n) for n = 1..1000</a>
%H K. Bezdek, P. Brass and H. Harborth, <a href="http://eudml.org/doc/232207">Maximum convex hulls of connected systems of segments and of polyominoes</a>, Beiträge Algebra Geom., Vol. 35(1) (1994), pp. 37-43.
%H S. Kurz, <a href="http://www.wm-archive.uni-bayreuth.de/fileadmin/Sascha/Publikationen2/thesis.pdf">Polyominoes with maximum convex hull</a>, Diploma thesis, Bayreuth (2004).
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1,0,-4,0,1,0,2,0,-1).
%F a(n) = (n^3 - 2*n^2 + 4*n)/16 if n mod 4 = 0;
%F a(n) = (n^3 - 2*n^2 + 13*n + 20)/32 if n mod 4 = 1;
%F a(n) = (n^3 - 2*n^2 + 4*n + 8)/16 if n mod 4 = 2;
%F a(n) = (n^3 - 2*n^2 + 5*n + 8)/32 if n mod 4 = 3.
%F G.f.: (1 + x - x^2 - x^3 + 2*x^5 + 8*x^6 + 2*x^7 + 4*x^8 + 2*x^9 - x^10 + x^12)/((1-x^2)^2*(1-x^4)^2).
%F From _Luce ETIENNE_, Aug 14 2019: (Start)
%F a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
%F a(n) = 2*a(n-2) + a(n-4) - 4*a(n-6) + a(n-8) + 2*a(n-10) - a(n-12).
%F a(n) = (3*n^3 - 6*n^2 + 17*n + 22 + (n^3 - 2*n^2 - n - 6)*(-1)^n - 4*(4*cos(n*Pi/2) - (2*n+3)*sin(n*Pi/2)))/64. (End)
%F E.g.f.: (1/64)*(-exp(-x)*(6 - 2*x - x^2 + x^3) + exp(x)*(22 + 14*x + 3*x^2 + 3*x^3) - 4*(4*cos(x) - 2*x*cos(x) - 3*sin(x))). - _Stefano Spezia_, Aug 14 2019
%p A122133 := proc(n)
%p if modp(n,4)= 0 then
%p (n^3-2*n^2+4*n)/16 ;
%p elif modp(n,4)= 1 then
%p (n^3-2*n^2+13*n+20)/32 ;
%p elif modp(n,4)= 2 then
%p (n^3-2*n^2+4*n+8)/16 ;
%p else
%p (n^3-2*n^2+5*n+8)/32 ;
%p fi;
%p end proc: # _R. J. Mathar_, May 19 2019
%o (PARI) Vec(x*(1+x-x^2+x^3+2*x^4+4*x^5+2*x^6+5*x^7+2*x^8+x^9)/((1-x)^4*(1+x)^4*(1+x^2)^2) + O(x^80)) \\ _Colin Barker_, Oct 14 2016
%K nonn,easy
%O 1,4
%A _Sascha Kurz_, Aug 21 2006