The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions). 3
 2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Coordinates are independent normally distributed random variables with mean 0 and variance 1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Steven R. Finch, Random Triangles, January 21, 2010. [Cached copy, with permission of the author] Eric Weisstein MathWorld, Gaussian Triangle Picking FORMULA rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides. EXAMPLE 0.23255934654317823447309035975033389931043501543502... MAPLE Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015 MATHEMATICA p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *) CROSSREFS Cf. A102519, A102520, A102556, A102557, A102558, A102559, A249491. Sequence in context: A318677 A239327 A021047 * A113649 A307864 A066119 Adjacent sequences: A249489 A249490 A249491 * A249493 A249494 A249495 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Oct 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:02 EDT 2023. Contains 365581 sequences. (Running on oeis4.)