

A102519


Decimal expansion of 1(3*sqrt(3))/(4*Pi).


13



5, 8, 6, 5, 0, 3, 3, 2, 8, 4, 3, 3, 6, 5, 5, 9, 6, 2, 8, 6, 6, 5, 0, 5, 1, 2, 6, 2, 6, 5, 2, 7, 2, 9, 1, 8, 9, 5, 1, 9, 6, 0, 1, 3, 9, 7, 2, 5, 0, 1, 9, 5, 1, 0, 4, 0, 0, 4, 7, 5, 4, 8, 4, 7, 8, 1, 7, 2, 7, 2, 7, 2, 3, 9, 8, 0, 4, 7, 6, 5, 3, 8, 6, 9, 7, 1, 4, 9, 7, 8, 3, 8, 2, 6, 2, 1, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is the probability that a Gaussian triangle in 3 dimensions is obtuse.
Also the probability that the distance between 2 randomly selected points within a circle will be smaller than the radius.  Amiram Eldar, Mar 03 2019


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000
M. W. Crofton, Problem 1829, solved by J. J. Sylvester and by the proposer, Mathematical Questions with Their Solutions: From the "Educational Times", Vol. 4 (1866), pp. 7778.
S. R. Finch, Random Triangles, Jan 21 2010. [Cached copy, with permission of the author]
Eric Weisstein's World of Mathematics, Gaussian Triangle Picking
Index entries for transcendental numbers


EXAMPLE

0.58650332843365596286650512626527291895196013972501951040047548478172727...


MATHEMATICA

RealDigits[1  (3*Sqrt[3])/(4*Pi), 10, 50][[1]] (* G. C. Greubel, Jun 02 2017 *)


PROG

(PARI) 1  (3*sqrt(3))/(4*Pi) \\ G. C. Greubel, Jun 02 2017


CROSSREFS

Cf. A102520, A240935.
Sequence in context: A011424 A011495 A136258 * A334849 A199265 A239382
Adjacent sequences: A102516 A102517 A102518 * A102520 A102521 A102522


KEYWORD

cons,nonn


AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 13 2005


STATUS

approved



