login
A199265
Decimal expansion of x<0 satisfying 2*x^2+x*cos(x)=2.
3
1, 1, 1, 5, 8, 6, 5, 4, 7, 4, 1, 7, 7, 8, 0, 0, 9, 2, 0, 0, 2, 5, 9, 0, 5, 3, 5, 2, 5, 3, 5, 8, 5, 5, 7, 9, 2, 7, 3, 6, 1, 2, 8, 0, 6, 6, 4, 8, 7, 3, 9, 7, 8, 1, 7, 4, 4, 6, 2, 5, 9, 3, 7, 6, 5, 1, 2, 5, 1, 1, 5, 6, 7, 6, 9, 2, 4, 1, 6, 1, 0, 9, 0, 2, 1, 6, 0, 9, 2, 7, 8, 4, 4, 7, 0, 8, 5, 6, 8
OFFSET
1,4
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.11586547417780092002590535253585579273...
positive: 0.84824964906603356449300167136536010515870...
MATHEMATICA
a = 2; b = 1; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199265 *)
r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
RealDigits[r] (* A199266 *)
CROSSREFS
Cf. A199170.
Sequence in context: A136258 A102519 A334849 * A239382 A085117 A301862
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved