OFFSET
0,2
COMMENTS
David H. Bailey and Richard E. Crandall proved that Stoneham numbers S(b,c)=Sum_{k>=1} 1/b^(c^k)/c^k are b-normal under the simple condition b,c > 1 and coprime. So the present number is 2-normal.
Named after the mathematician Richard G. Stoneham (1920-1996). - Amiram Eldar, May 09 2022
LINKS
David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, Experimental Mathematics, Vol. 11, No. 4 (2002), pp. 527-546; alternative link.
R. Stoneham, On the Uniform Epsilon-Distribution of residues Within the Periods of Rational Fractions with Applications to Normal Numbers, Acta Arithmetica, Vol. 22, No. 4 (1973), pp. 371-389.
Wikipedia, Stoneham number.
FORMULA
S(3, 2) = Sum_{k>=1} 1/3^(2^k)/2^k.
EXAMPLE
0.0586610287343372...
MATHEMATICA
digits = 103; Clear[s]; s[n_] := s[n] = Sum[1/3^(2^k)/2^k, {k, 1, n}] // RealDigits[#, 10, digits]& // First // Prepend[#, 0]&; s[1]; s[n=2]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) sum(k=1, 6, 1./3^(2^k)/2^k)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Aug 10 2003
EXTENSIONS
Corrected from a(63) on by Jean-François Alcover, Feb 15 2013
STATUS
approved