login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085114
Binary expansion of Sum 1/(p*2^p) where p runs through the set of Artin primes (primes with primitive root 2).
1
0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
David H. Bailey and Richard E. Crandal conjectured that this constant is 2-normal.
REFERENCES
David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, 2000
FORMULA
0.00001100010001111100....
PROG
(PARI) sum(k=1, 2000, if(znprimroot(prime(k))-2, 0, 1)*1./prime(k)/2^prime(k))
CROSSREFS
Sequence in context: A131533 A131532 A353513 * A286336 A011661 A011660
KEYWORD
base,cons,nonn
AUTHOR
Benoit Cloitre, Aug 10 2003
STATUS
approved