login
A160043
Decimal expansion of (5907+1802*sqrt(2))/73^2.
4
1, 5, 8, 6, 6, 7, 9, 0, 8, 4, 1, 4, 2, 6, 7, 5, 4, 1, 3, 3, 8, 7, 2, 4, 7, 7, 1, 6, 4, 6, 1, 9, 7, 7, 0, 9, 4, 6, 8, 6, 1, 6, 0, 3, 9, 0, 2, 1, 0, 0, 3, 1, 9, 8, 1, 2, 0, 9, 3, 0, 3, 2, 2, 5, 3, 4, 4, 2, 1, 0, 9, 0, 7, 5, 2, 2, 7, 4, 6, 6, 4, 7, 4, 0, 2, 5, 8, 9, 2, 9, 1, 9, 6, 0, 6, 6, 9, 9, 4, 0, 7, 1, 4, 6, 7
OFFSET
1,2
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A129289.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160041.
LINKS
FORMULA
Equals (106+17*sqrt(2))/(106-17*sqrt(2)).
Equals (3+2*sqrt(2))*(9-2*sqrt(2))^2/(9+2*sqrt(2))^2.
EXAMPLE
(5907+1802*sqrt(2))/73^2 = 1.58667908414267541338...
MATHEMATICA
RealDigits[(5907 + 1802*Sqrt[2])/73^2, 10, 50][[1]] (* G. C. Greubel, Apr 15 2018 *)
PROG
(PARI) (5907+1802*sqrt(2))/73^2 \\ G. C. Greubel, Apr 15 2018
(Magma) (5907+1802*Sqrt(2))/73^2; // G. C. Greubel, Apr 15 2018
CROSSREFS
Cf. A129289, A160041, A002193 (decimal expansion of sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73).
Sequence in context: A085117 A301862 A245944 * A322633 A346443 A145432
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, May 04 2009
STATUS
approved