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Let X, Xy, X3, Y1, Y5, Y3, 7y, Z5, Z3 be independent normally distributed
random variables with mean 0 and variance 1. The points (X, Y1), (X2, Y2), (X3,Y3)
constitute the vertices of a triangle in Euclidean 2-space (the plane); the points
(X1, Y1, Z1), (X2, Ys, Z3), (X3, Ys, Z3) constitute the vertices of a triangle in Euclidean
3-space. A number of parameters (for example, sides, angles, perimeter and area)
describe the triangle, but the corresponding probability density functions are not
well-known. We attempt to remedy this situation in this essay. Perhaps the most
famous results for random Gaussian triangles are the following [1, 2J:

P(a Gaussian triangle in 2-space is obtuse) = 3/4 = 0.75,

P(a Gaussian triangle in 3-space is obtuse) = 1 — 3v/3/(47) = 0.5865033284....

which translate into statements about the maximum angle exceeding 7/2. Consider,
however, an arbitrary angle « in a triangle. What is its first moment E(«)? This
turns out to be trivial. What is its second moment E(a?)? This is more difficult,
even in 2 dimensions, and the answer is apparently new. Our essay, the first in a
series, arises in an effort to expand upon [3].

0.1. Sides. Let a, b, ¢ denote the sides of a random Gaussian triangle. The
trivariate density f(z,y,z) for a, b, ¢ in 2 dimensions is [4]

2 TYZ

1
3z +y+2)(—rt+y+2)z—y+2)(@+y—2) (6
iflz—y|l<z<z+y,
0 otherwise

and we shall give an elementary proof of this later. The condition |z —y| < z < z+y
is equivalent to |z — z| <y < x4z and to |y — z| < < y+ z via the Law of Cosines.
As a consequence, the univariate density for a corresponds to Rayleigh’s distribution:

x x? -0
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and [5, 6]
E(a) = /7 = 1.7724538509...,  E(a?) = 4,
B(ab) = 4F () = 3k (1) = 3.3412233051
a = 5 5 5 = 9.
where
" 1 i 1
K(§) = / df = / dt,
) J1-Esin@2 4\ Ju-e)a-en)
w/2 1

E(g):/,/l—ésm(e)?de:/ %gjfdt
0 0

are complete elliptic integrals of the first and second kind [7]. The cross-correlation
coefficient

plab) = —2oab)  B@b) =T ooonnsa6s..

\/Var(a) Var(b) 4—m

is quite small, indicating weak positive dependency. Interestingly, p(a? b%) = 1/4 =
0.25 since a?, b? are quadratic forms in normal variables and classical theory applies
8, 9].

The trivariate density for a, b, ¢ in 3 dimensions is [4]

3 1
gixyzexp(—a(ﬁ—ky?—i—z?)) if e —yl<z<z+y,
T

0 otherwise

which is surprisingly simpler than the corresponding result in 2 dimensions. As
a consequence, the univariate density for a corresponds to the Maxwell-Boltzmann

distribution: ) )
L ex _r x>0
o/ P\ T4 )
and 4
E(a) = 7 = 22567583341, E(a?) = 6,
6v/3
E(ab) =2+ T\f — 5.3079733725...,
—8+3V3+m 1
b) = = 0.2370510252... 2 p?) = - = 0.25.
pla,b) . 0.2370510252....  pla®,b?) = 7 = 0.25
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0.2. Perimeter and Area. For perimeter a + b + ¢, the density is a double
integral:

r rT—v

//f(x—u—v,u,v)dudv, x>0
0 0

which we have not attempted to evaluate. Thus only moments are given. In 2
dimensions,

E(perimeter) = 3v/7 = 5.3173615527...,

E(perimeter2) = E((a+b+ c)2)
3E(a®) + 6 E(ab)
1

1
= 12+ 24F (5 - 9K (5) = 32.0473398308...

and in 3 dimensions,

12
E(perimeter) = == 6.7702750025...,
T

36/3

7

= 49.8478402351....

E(perimeter®) = 30 +

More can be said about area (1/4)\/(a + b+ c)(—a+b+c)(a—b+c)(a+b—c).
In 2 dimensions, area can be proved to be exponentially distributed, with density [10]

2 2
—exp| —=z ], x > 0.
3oy ( V3 )
The formula given in [11] is unfortunately incorrect. In particular,

3 3
E(area) = % = 0.8660254037...,  E(area?) = 5= L.5.
A proposed density in [12] for 3 dimensional area also seems to be wrong. We find

instead 9
E(area) = v/3 = 1.7320508075...,  E(area?) = 5 =45

and provide experimental verification elsewhere [13].
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0.3. Angles. Let a, 3, v denote the angles of a random Gaussian triangle. Of
course, o + 3 + v = m, thus 7 can be eliminated from consideration. The bivariate
density ¢(x,y) for «, 8 in 2 dimensions is [14]

sin(z) sin(y) sin(z + y)

6 .
—— - - 5 H0<z<mO<y<mandaz+y<m,
T (sin(z)? + sin(y)? + sin(x + y)?)

0

otherwise

and we shall confirm this later. The univariate density for o was first discovered by
W. S. Kendall [15], via a fairly geometric argument, but has never appeared explicitly
in the open literature (the closest was [16]; see also [17]). Starting from the bivariate
density, we obtain the univariate density via

6 T sin(x) sin(y) sin(x + y) J
7r / (sin(x)2 + sin(y)? + sin(z + y)2)° y

™=

6 cos(x) sin(z)
o 7r/2(4cos(w)z)(sin(:c)2+sin(y)2+sin(r+y)2)dy
0

=X

+§ / < sin(z) sin(y) sin(z+y) o cos(z) sin(z) > dy

(sin(z)2+sin(y)2+sin(z+y)2)? 2(4—cos(z)?)(sin(z)2+sin(y)2+sin(z+y)?)
0

_ 3 cos(a) (z -+ aresin (cos(x))) I

T (4 — cos(z)?)*/* \ 2 2 74— cos(z)?

Call this latter expression g(x). Now, since 3E(a) = E(a + 5 + ) = m, we have
E(a) = 7/3. It is harder to show that

7 1 1
E(a?) = %H -3 Liy (Z) = 1.7852634251...

where

is the dilogarithm function [18]. Also, since 3 Var(«)+6 Cov(a, §) = Var(a+8+7) =
0, we have p(«, ) = —1/2; therefore

) 1 1
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Finally,

G(z) = 0/9(5) g = % sin(z) 7 (g + arcsin (Coz(x)» +ig

(4 — cos(x)? @

which implies that P(aw > 7/2) = 1 — G(7/2) = 1/4 = 0.25, where « is arbitrary.
This is equal to (1/3) P(max(«, 3,7) > 7/2) because a triangle can have at most one
obtuse angle.

The bivariate density for «, 3 in 3 dimensions is new, as far as we know:

24v3 _ sin(x)’sin(y)® sin(w + y)*

T (sin(z)? + sin(y)? + sin(z + y)2)°
0 otherwise.

fo<z<miO<y<mandO<z+y<m,

The univariate density for « is obtained similarly:

24f / sin(z)? sin(y)? sin(z + y)? p
Y
(sin(z

2 4+ sin(y)? + sin(z + y)2)3

_ 24\/_ / 2+COS(J:)2) sin(z)?2 dy
4(4—cos(z)?2)*(sin(x)2+sin(y)2+sin(z+y)?)
24\/_ sm(:r sin(y)? sin(z+y)? (2+COS($)2) sin(z)? d
(sin(x)2+sin(y)2+sin(z+y)?2)* 4(4—cos(x)?)? (sin(x)2+sin(y)2+sin(z+y)2) Y

_ 6v/3 (2 + COS(:U)Q) sin(z) <7T

T (4- COS(I‘)2)5/2 2

M)) N 9v/3 cos(z) sin(x)

+ arcsin .
( 2 T (4 — cos(x)?)?

Call this latter expression i (z). We observe that h(z) = —v/3¢'(x) and wonder about
the meaning of such a connection. As before, E(a) = 7/3. It follows that

E(a?) = % (w . \/5) — 1.4760687694...,

E(af) = %\/5 — 0.9068996821....
Finally,

P(a > m/2) = 1+ V3 (g(x/2) — g(0)) = % - Z—f = 0.1955011094...
P

where « is arbitrary. This again is equal to (1/3) P(max(a, 3,7) > 7/2).
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0.4. Order Statistics. We will, for brevity’s sake, study only maximum/minimum
angles in two dimensions and only maximum/minimum sides in three dimensions.
Define g(x) to be

3 cos(z) T esin cos(z)) arctan 3 cos(z)
T (4 — cos(z)?)/? <2 ( 2 ) zarct ( 4 — cos(x)2> )
3 1 — 4 cos(z)?

T cos(@)) (1 + 2008(2)?)

which is positive for 7/3 < z < 7/2. Given a > 0, 5 > 0, o + [ < 7, the angle « is
maximum if « > $ and a > m — o — . Hence the density for the maximum angle is

( x
3 / olr,y)dy ifn/3<z<7/2,
o [ 3g(x)  ifrm/3<x< /2,
T ] 3g(x)  ifm2<ax<m
3/@(m,y)dy ifr/2<zx<m
\ 0

after breaking up the integral of ¢(x,y) precisely as outlined earlier. This density
again was first discovered by Kendall [15] using a different approach. Incidentally,

the identity
, (cos(x)) cos(x)
arcsin = arctan | ————=——
2 4 — cos(r)?

might lead to a more natural expression for §(z). The value 3g(7) = 3/7 — 1/V/3 =
0.3775793893... is called the shape constant (or first collinearity constant) for planar
Gaussian triangles [16, 17].

Define ¢ (z) to be

3 cos(z) <7r  resin ( 4 — cos(x)? sin(m)2> g arctan ( 2 + cos(z)? ))
T (4 — cos(z)?)/? 2 cos(x)4/4 — cos(x)?

3 1 — 4cos(x)?
7 (4 — cos(x)?)(1 + 2 cos(x)?)

which is positive for 0 < < 7/3. The angle v is minimum if &« < g and o < T—a—f.
Hence the density for the minimum angle is

T—2T

3 / oz, y)dy = 3u(x)

xT
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after similar breakup. This result is evidently new. Moments for these distributions
remain open.
Advancing up to three dimensions, the density for the maximum side is [4]

3x 3 2 2 2 \/gl'
7 194/ 2 —z?/2 _ _—x*/3 —z?/4 £l X2==
2 [ \/; (=) rae et | 35

for x > 0, and the density for the minimum side is

3z 3 2 2 2 \/gl’
o e —z?/2 _ =z ) —z?/4 Vo
NG [2\/;<e e +uze erfc( 5 )]

where erf, erfc are the error and complementary error functions [19].

0.5. Trivariate Details. Our proof closely follows [20]. Consider sides a, b of a
random Gaussian triangle in the plane. Using

a’ = (XQ—X1)2+(Yz—Y1)2, b = (X3—X1)2+(Yé—yl)2

we picture vectors d, b emanating from (X1,Y]) to (Xs,Y2), (X3,Y3), respectively.
Define 0 < 6, < 27 to be the angle between vector @ and the z-axis; define 0 < 0, < 27
likewise. Observe that

oy = (B2 B2 = (B2 B2

are independent random vectors satisfying
0 1
(ua7ub)7(va7vb)NN(<O)v(l >>
2
Define s, = a®/4 and s, = b?/4. Then
Ug = V/284€08(0,), Vo =/25.8n(0,),  up = /2s5c08(0p), v, = /25 sin(0))

and conversely

— NI=

2,2 2 .2
Uy + vy Uj, + Uy Ua Yo
§, = ——12 Sp = tan(f,) = — tan(0,) = —.
a 2 ) b 2 ) ( a) ua7 ( b) ub
The Jacobian matrix of the transformation (u,, va, up, vp) — (Sa, Sp, 04, 0p) is
Ug Vg 0 0
0 0 Up Up
v u
J=]| ——= 2 0 0
u2 + 02 w2+ 02
v U
0 0 b b
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For example,

00 0 0 v v
ea 2% _ t ea Ya a
sec(0a) Ou, Ouy, (0a) = Qg Uy u?
implies that
00 v u? v v
@ _ _ 9@ 27a _ %a “a a
Oug cos(f) u? 25, u2 uZ + 02
As another example,
00 0 0 v 1
0.’ — = —tan(f,) = —— = —
sec(0a) ov, Ov, an(0) 0V, Ug Uy
implies that
00 1 Wl u
a — 9(1 2— — a ft a .
o, cos(0) Ug  2SqUq Ul 402
Since the absolute determinant |.J| = 1, changing variables from (ug,va, up, vp) to

(Sas Sp, 0a, Op) is easily performed. The density of (u,,u) gives rise to

_ \/gwexp- g(zﬂ—uauwub)]
= o[- (2o — VI cos(t) cos() + 2 cos(t)
= e [ (a0 VAR 0) cosl) + s cox))]

and the density of (v,,v,) likewise gives rise to

\/_ exp l 2 (Uz — UV, Up + vf)]
3T

1 4 (Sa sin(0,)? — /Sa5p sin(0,) sin(6y) + sy sin(@b)2)] )

N \fﬂexp[

By independence, the density of (ug, up, Vg, vp) is

1 4
33 OXP [_5 (S — \/SaSpcos(0, — 6y) + sb)]

where 0 < 0, < 2w, 0 < 0, < 2.
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We move toward integrating out 0,. Let w = 6, — #,. The Jacobian matrix of the
transformation (s, Sp, 04, 0p) — (Sa, S, w, 0,) is

o O

-1
0

o O O =
O O = O
—_= O O

and |K| =1, hence the density of (s,, sp,w,0,) is

1 4
3.2 &XP [—g (Sa — \/SaSp cos(w) + sb)}

where —27 < w < 27 plus an additional condition. If w < 0, then 8, < 27 forces
0, <2r+0,—0, =21+ w, thus

24w
1 4
32 / exp [—g (8q — /SaSp cos(w) + sb)} do,
0
2 +w 4
= —32 X {—g (84 — \/SaSp cos(w) + sb)] ;

if w > 0, then 6, > 0 forces 0, > 0, — 0, = w, thus

1
32

27
4
exp [—g (Sa — v/Sasp cos(w) + Sb)] do,

w

2r —w 4
= g exp l—g (84 — \/SaSp cos(w) + sb)] :

In either case, the coefficient numerator is 2w — |w| and the density is symmetric in
w about 0. Let v = |w|, then we multiply by 2 to obtain the density of (s, sp,7) :

2(2m — )
32

exp {—g (S0 = /Sasp cos(y) + Sb)}

where 0 < v < 27. Adding contributions at v and 27 — ~ yields

4 4
3 exP {—g (Sa — v/Sasp cos(y) + sb)}
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for 0 < v < m, which works since 2(2m — 7) + 2y = 47 and cos(y) = cos(2m — 7).
Replacing s,, s, by a?/4, b*/4 yields

4 l4(a2 ab bz)lab
—exp |—=———cos(7y)+ = )| ==

3T 3\ 4 4 4 22
= iabexp 1 (a* — abcos(v) + %)
3 3 '

This is already useful for computing moments of area:

B <<%absin(7))m) ~ o (?)m

for all positive integers m. Also, an initial step in calculating E(ab) is to evaluate

1 [ 5, 1,, ) a’v? 1,5 ab
37?@ a’b exp{ 3 (a* —abceos(y) +b )] dy = 3 exp{ 3 (a®>+b )} Iy ( 3 )
where Iy(z) is the modified Bessel function of the first kind [21]. Note that the angle
v is adjacent to sides a, b and opposite to side ¢, as is traditional. The analogous
density for («, 3, ¢) appears in the next section.

We now bring ¢ into the trivariate density, removing 7. Differentiating the Law
of Cosines

¢ =a® —2abcos(y) + b
with respect to v, it is clear that

2cde = 2absin(y)dy
= V(a+b+e)(—a+b+c)a—b+c)a+b—c)dy

by a formula for area, and hence the density becomes

1 1
gabexp l—g (a® —abcos(v) + b2)} da db dry
1 1
= 3 abexp {_6 (a® +b° + (a® — 2abcos(y) + b2))} da db d~y
2 abce

1 2 2 2
= — exp |—= (a”+b°+c°)| dadbdc
3t \/la+b+c)(—a+b+c)la—b+c)la+b—rc) p{ 6( )

assuming 0 < v < 7, that is, a®> — 2ab+ b* < ¢ < a®> +2ab + b2, The required
condition |a — b| < ¢ < a + b does not change upon permutation of sides a, b, c.
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Note that the variables s,, s, are each exponentially distributed with mean 1,
with cross-correlation 1/4. A closed-form expression for the density of (s,, sp) is not
possible [20], but an infinite series representation [22]

— 1
Z 4—n<I>(—n, 1, 5,)®(—n, 1, sp) exp(—(sq + sp))
n=0

is valid, where ®(u,v,w) is the confluent hypergeometric function of the first kind
[23]. In this special case,

O(—n,1,t) = Zn: (Z) (_kll)kt’“.

k=0

Proving the series representation makes use of

2 2 2 2
(B (R () +(B)
a= | —= —= > b= | —= —=
V2 V2 V2 V2
and the fact that wu,/v/2, u,/v/2 are jointly normal with mean 0, variance 1/2 and
cross-correlation 1/2. Other multivariate generalizations of the exponential distribu-

tion are found in [24].
For the (a, b, ¢)-density of random Gaussian triangles in 3-space, we refer to [4].

0.6. Bivariate Details. Let A = (a+b+c¢)(—a+b+c)(a—b+c)(a+b—c) for
convenience. The transformation (a, b, c) — (o, 5, ¢) is prescribed via

—a® + b+ —b* +a® + ¢
cos(a) = T ope cos(f) = —
We have, for example,
—sin(a)a—a __a —Sin(a)a—a B a? + b — 2 —sin(a)a—a B a? —b? 4 2
da  bc’ ob 202¢ 9 - 92
hence
Oa a1 _a_ 1 ~a2ec 2
8a_bcsin(a)_bc\/m_bc\/z—\/z>
da _ a?+P -2 1 _a*+ 0 =c*2bc P4V -

b 2b%c  sin(a) 20%¢ VA WA
@__a2—b2+c2 1 _a2—b2+022bc__a2—b2+02
de 2bc  sin(a) 2b 2 VA /A
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The corresponding Jacobian matrix is

2a —a®? -+ —a?+b -
VA bW A VA
L= —a?2 -+ A 2b a? — b — 2

avA
0

=3

/A
1
and |L| = 1/(ab). By the Law of Sines,
_ Csm(a) _. sin(a) b sin(3) sin(5)

sin(y)  sin(a+ )’ B Csin(’y) B Csin(a + 0)
and, under the change of variables,

V5 _ gsinfo)sin()
sin(a + )
The density of («, 3, ¢) in two dimensions is
32 a\/b_ exp {—1 (a®+b*+c )}
9 2 2 2 ‘ ‘ ‘
— 32 :l?((z)_i_ Sﬁu;fi)_ Xp { —sm(; o (sin(a)? + sin(3)? + sin(a + 5)2)1
& sin(w)sin(p) ¢?sin(a)? + sin(B3)? + sin(a + 3)?
~ 3r sin(a+ f)? P {_E sin(a + )2 } '

Integrating out c is facilitated by observing that

i 2

3 c 18
/C exp <_ET) dc = =l
0

for r > 0, therefore the density of (

@, ) in two dimensions is

18 sin(a) sin(B) ( sin(a + ()2 )2
3m sin(a + B)3 \sin(a)? + sin(f)? + sin(a + [3)?

6 sin(a) sin(B) sin(a + 3)

7 (sin(a)? + sin(f)? + sin(a + £)2)?°

Similarly, the density of (a, 3, ¢) in three dimensions is

1
gaQbQC exp (_6 (a2 + b+ 02))

/3 sin(a)?sin(B)? ¢?sin(a)? + sin(B3)? + sin(a + 3)?
97 sin(a+ B)* P [_E sin(a + /3)?
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i 2
; ¢ 216
/C exp <—ET') dec = F

Here we observe that

for r > 0, therefore the density of (« ) in three dimensions is
216+/3 sin(a)? sin(3 sin(a + 3)? s
97 sin(a + 5 sin(a)? + sin(5)2 + sin(a + (5)?2
2

24v/3  sin(a)?sin(B3)?sin (oz—i—ﬁ)
7w (sin(a)? + sin(B)? + sin(a + §)?)3

We turn attention to the most interesting of our moment evaluations, that con-

cerning E(a?). First,
/arcsin (COS;I)) dr =20
0

because arcsin(cos(m — x)/2) = arcsin(—cos(x)/2) = —arcsin(cos(x)/2). Conse-

quently
+ / arcsin (cos(x)) dx
0 2
0

™

\/% — —zarcsin (‘3052(1’)>

7T2

6

using integration by parts. Second,

r _ [cos(z)\\? ir — 1 o= — 2m\ (2n 1 1] 2m+2n+2, )
arcsin 5 z = 7 E E 16m+n o 1om s 1 cos(z) x
0

0 n=0

B lii 2m\ [ 2n 2m+2n—|—2 1 1
16 - 64m+n n m+n+1 /J2m+12n+1

n=

1
4
which is a curious generalization of sums found in [25]. Consequently
m . 2 iy ™ 2
1
_osin@) arcsin (cos(m)) dr = -2 (arcsin (cos(m))) + —/ (arcsin (COS($)>> dz
) /4 — cos(z)? 2 2 2 20 2

0
3 1

—_

w|=1
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using integration by parts again. Third, G(7) = 1 and G(0) = 0, where G'(z) = g(x).
Finally,

K K

/ PG (x)dr = 2*Glx)|T -2 / 2 G(z) dv

0 0
2 [ 2 [
= g2-= Sm(x) (W + arcsin (cos(m))) dx — —/xQd:B
\/ — cos(x 2 7T0

2 2
g T ™ 1. /1 2
= - (-l (-)) -2
TG ( 71 12(4)) 3"

as was to be shown.
A random Gaussian triangle captures a location (§,7n) with probability

0.250000...  if § =0,
0.197171... ifd=1/2,
[p(8) +1(6)] = { 0.098289... ifd=1,
0.032455...  if d = 3/2,
0.007626...  if § =2

where § = /& 4 72 and

go:/
0
0

Y = ///eXp (a1+9) +(b1+6)2 (c1+6)2> lw—Qarctan< \/%)} dcydbiday .
Cc1 al

—oo—o0 0

0
_ (a148)24(b149) +(cl+5)2) aib

/ exp 3 lw + 2 arctan (mmﬂ dcidbday,

—00

The specific result 1/4 for capturing (0, 0) is well-known [26]; the general result is less
so [27]. See also [28, 29, 30].
We conclude with an unsolved problem: what is an exact expression for

1 o0 oo T 1
E(an) = Q/O /0 /0 2y 0 exp [—g (x2 —xzycos(f) + yQ)] df dy dx = 1.6377...

(in two dimensions)? An answer for E(a «) is believed to be even more difficult.
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