login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162436
a(n) = 3*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
13
1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
OFFSET
1,2
COMMENTS
Interleaving of A000244 and 3*A000244.
Unsigned version of A128019.
Partial sums are in A164123.
Apparently a(n) = A056449(n-1) for n > 1. a(n) = A108411(n) for n >= 1.
Binomial transform is A026150 without initial 1, second binomial transform is A001834, third binomial transform is A030192, fourth binomial transform is A161728, fifth binomial transform is A162272.
FORMULA
a(n) = 3^((1/4)*(2*n - 1 + (-1)^n)).
G.f.: x*(1 + 3*x)/(1 - 3*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: cosh(sqrt(3)*x) - 1 + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022
MATHEMATICA
CoefficientList[Series[(-3*x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Transpose[NestList[{Last[#], 3*First[#]}&, {1, 3}, 40]][[1]] (* or *) With[{c= 3^Range[20]}, Join[{1}, Riffle[c, c]]](* Harvey P. Dale, Feb 17 2012 *)
PROG
(Magma) [ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..35] ];
(PARI) a(n)=3^(n>>1) \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS
Cf. A000244 (powers of 3), A128019 (expansion of (1-3x)/(1+3x^2)), A164123, A026150, A001834, A030192, A161728, A162272.
Essentially the same as A056449 (3^floor((n+1)/2)) and A108411 (powers of 3 repeated).
Sequence in context: A128019 A056449 A108411 * A146788 A147244 A146575
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 03 2009, Jul 05 2009
EXTENSIONS
G.f. corrected, formula simplified, comments added by Klaus Brockhaus, Sep 18 2009
STATUS
approved