Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 31 2022 13:18:59
%S 1,3,3,9,9,27,27,81,81,243,243,729,729,2187,2187,6561,6561,19683,
%T 19683,59049,59049,177147,177147,531441,531441,1594323,1594323,
%U 4782969,4782969,14348907,14348907,43046721,43046721,129140163,129140163,387420489,387420489,1162261467
%N a(n) = 3*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
%C Interleaving of A000244 and 3*A000244.
%C Unsigned version of A128019.
%C Partial sums are in A164123.
%C Apparently a(n) = A056449(n-1) for n > 1. a(n) = A108411(n) for n >= 1.
%C Binomial transform is A026150 without initial 1, second binomial transform is A001834, third binomial transform is A030192, fourth binomial transform is A161728, fifth binomial transform is A162272.
%H Vincenzo Librandi, <a href="/A162436/b162436.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,3).
%F a(n) = 3^((1/4)*(2*n - 1 + (-1)^n)).
%F G.f.: x*(1 + 3*x)/(1 - 3*x^2).
%F a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011
%F E.g.f.: cosh(sqrt(3)*x) - 1 + sinh(sqrt(3)*x)/sqrt(3). - _Stefano Spezia_, Dec 31 2022
%t CoefficientList[Series[(-3*x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 10 2011 *)
%t Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]] (* or *) With[{c= 3^Range[20]},Join[{1},Riffle[c,c]]](* _Harvey P. Dale_, Feb 17 2012 *)
%o (Magma) [ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..35] ];
%o (PARI) a(n)=3^(n>>1) \\ _Charles R Greathouse IV_, Jul 15 2011
%Y Cf. A000244 (powers of 3), A128019 (expansion of (1-3x)/(1+3x^2)), A164123, A026150, A001834, A030192, A161728, A162272.
%Y Essentially the same as A056449 (3^floor((n+1)/2)) and A108411 (powers of 3 repeated).
%K nonn,easy
%O 1,2
%A _Klaus Brockhaus_, Jul 03 2009, Jul 05 2009
%E G.f. corrected, formula simplified, comments added by _Klaus Brockhaus_, Sep 18 2009