|
EXAMPLE
|
Let coefficients in powers of the series:
S = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
form the following sequences:
S^1: [(1),(1,0),(1,0,0),(1,0,0,0),(1,0,0,0,0),...]
S^2: [(1),(2,1),(2,2,0),(3,2,0,2),(2,2,1,2,0),...]
S^3: [(1),(3,3),(4,6,3),(6,9,3,7),(9,6,9,9,6),...]
S^4: [(1),(4,6),(8,13,12),(14,24,18,20),...]
S^5: [(1),(5,10),(15,25,31),(35,55,60,60),...]
S^6: [(1),(6,15),(26,45,66),(82,120,156,170),...]
...
then the sums of the above grouped terms (in parenthesis)
form the initial terms of the rows of table A162430:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,4,7,7,9,12,11,15,14,19,19,19,22,23,27,26,...
1,6,13,25,39,52,81,97,129,154,187,234,250,321,...
1,10,33,76,157,264,425,626,897,1230,1629,2174,...
1,15,71,210,535,1086,1965,3431,5425,8181,12165,...
1,21,137,528,1622,3921,8254,16396,29136,48773,...
1,28,245,1219,4494,12936,31767,70826,141891,...
1,36,414,2621,11602,39622,112951,283574,637706,...
...
The main diagonal of the above table forms this sequence.
|