login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162430
Square table defined by T(n,k) = Sum_{m=k(k+1)/2..k(k+1)/2+k} [x^m] S(x)^n for n>=1, k>=0, where S(x) = Sum_{n>=0} x^(n(n+1)/2), as read by antidiagonals.
7
1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 10, 13, 7, 1, 1, 15, 33, 25, 7, 1, 1, 21, 71, 76, 39, 9, 1, 1, 28, 137, 210, 157, 52, 12, 1, 1, 36, 245, 528, 535, 264, 81, 11, 1, 1, 45, 414, 1219, 1622, 1086, 425, 97, 15, 1, 1, 55, 669, 2621, 4494, 3921, 1965, 626, 129, 14, 1, 1, 66, 1042
OFFSET
1,5
LINKS
EXAMPLE
This table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,4,7,7,9,12,11,15,14,19,19,19,22,23,27,26,27,31,30,33,35,35,40,...
1,6,13,25,39,52,81,97,129,154,187,234,250,321,337,406,468,493,579,...
1,10,33,76,157,264,425,626,897,1230,1629,2174,2653,3448,4119,4978,...
1,15,71,210,535,1086,1965,3431,5425,8181,12165,17211,23345,31980,...
1,21,137,528,1622,3921,8254,16396,29136,48773,79307,121743,180415,...
1,28,245,1219,4494,12936,31767,70826,141891,264131,468482,785401,...
1,36,414,2621,11602,39622,112951,283574,637706,1318351,2557686,...
1,45,669,5317,28275,113922,375337,1064274,2679558,6142420,...
1,55,1042,10280,65601,310314,1177530,3774455,10626160,26954099,...
1,66,1573,19085,145751,806465,3514434,12733216,40034302,...
1,78,2311,34211,311524,2010329,10036832,41072816,144045962,...
...
Let coefficients in powers of the series:
S = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
form the following sequences:
S^1: [(1),(1,0),(1,0,0),(1,0,0,0),(1,0,0,0,0),(1,0,0,0,0,0),...]
S^2: [(1),(2,1),(2,2,0),(3,2,0,2),(2,2,1,2,0),(2,4,0,2,0,1),...]
S^3: [(1),(3,3),(4,6,3),(6,9,3,7),(9,6,9,9,6),(6,15,9,7,12,3),...]
S^4: [(1),(4,6),(8,13,12),(14,24,18,20),(32,24,31,40,30),...]
S^5: [(1),(5,10),(15,25,31),(35,55,60,60),(90,90,95,135,125),...]
S^6: [(1),(6,15),(26,45,66),(82,120,156,170),(231,276,290,390,...]
S^7: [(1),(7,21),(42,77,126),(175,253,357,434),(567,735,833,...]
S^8: [(1),(8,28),(64,126,224),(344,512,757,1008),(1332,1792,...]
S^9: [(1),(9,36),(93,198,378),(633,990,1521,2173),(2979,4113,...]
S^10:[(1),(10,45),(130,300,612),(1105,1830,2925,4420),(6341,...]
...
then the sums of the above grouped terms (enclosed in parenthesis)
form the initial terms of the rows of this table. Examples:
T(3,4) = (9+6+9+9+6) = 39 ;
T(4,3) = (14+24+18+20) = 76 ;
T(5,3) = (35+55+60+60) = 210.
Summing the coefficients of S^n in this way generates all the rows of this table.
MATHEMATICA
t[n_, k_] := Module[{s = Sum[x^(m*(m+1)/2), {m, 0, k+1}]+O[x]^((k+1)*(k+2)/2)}, Sum[Coefficient[s^n, x, m], {m, k*(k+1)/2, k*(k+1)/2+k}]]; Table[t[n-k+1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 18 2013 *)
PROG
(PARI) {T(n, k)=local(S=sum(m=0, k+1, x^(m*(m+1)/2))+O(x^((k+1)*(k+2)/2))); sum(m=k*(k+1)/2, k*(k+1)/2+k, polcoeff(S^n, m))}
for(n=1, 12, for(k=0, 12, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. rows: A162431, A162432, A162433.
Cf. A162434 (antidiagonal sums), A162435 (main diagonal).
Cf. A162424 (variant).
Sequence in context: A184049 A125230 A208334 * A305059 A355996 A128101
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 03 2009
STATUS
approved