OFFSET
0,4
COMMENTS
Row 2n has 2n+1 terms; row 2n+1 has 2n+1 terms.
REFERENCES
S. Heubach, Tiling an m X n area with squares of size up to k X k (m <= 5), Congressus Numerantium 140 (1999), pp. 43-64.
LINKS
R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 (2016)
FORMULA
G.f.=(1-tz)/(1-z-tz-2tz^2-t^2*z^2+t^2*z^3+t^3*z^3).
Sum (T(n,k), k=0..2*floor(n/2) ) = A054854(n).
T(n,1)=3(n-1)=A008585(n-1).
T(n,2)=A080855(n-2).
Sum(k*T(n,k), k=0..2*floor(n/2)) = A128102(n).
T(n,3) = (n-3)*(9*n^2-63*n+124)/2, n>=3. - R. J. Mathar, Aug 23 2016
T(n,4) = (3*n-13)*(9*n^3-123*n^2+602*n-1024)/8, n>=4. - R. J. Mathar, Aug 23 2016
EXAMPLE
Triangle starts:
1;
1;
1,3,1;
1,6,4;
1,9,16,8,1;
1,12,37,34,9;
1,15,67,105,65,15,1;
MAPLE
G:=(1-t*z)/(1-z-t*z-2*t*z^2-t^2*z^2+t^2*z^3+t^3*z^3): Gser:=simplify(series(G, z=0, 15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..2*floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
CoefficientList[#, t]& /@ CoefficientList[(1 - t z)/(1 - z - t z - 2 t z^2 - t^2 z^2 + t^2 z^3 + t^3 z^3) + O[z]^12, z] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 19 2007
STATUS
approved