login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162428
Antidiagonal sums of table A162424.
6
1, 2, 4, 8, 16, 37, 87, 210, 523, 1352, 3579, 9715, 26956, 76367, 220408, 648044, 1940191, 5907256, 18279257, 57449874, 183261022, 592970009, 1945136089, 6465415945, 21764630304, 74168652771, 255759582378, 892121078978
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Sum_{m=k*(k+1)/2..k*(k+1)/2+k} [x^m] S(x)^(n-k) for n>=1 where S(x) = Sum_{n>=0} x^((n+1)(n+2)/2-1).
EXAMPLE
Let coefficients in powers of the series:
S = 1 + x^2 + x^5 + x^9 + x^14 + x^20 + x^27 + x^35 + x^44 +...
form the following sequences:
S^1: [(1),(0,1),(0,0,1),(0,0,0,1),(0,0,0,0,1),...]
S^2: [(1),(0,2),(0,1,2),(0,2,0,2),(1,2,0,0,4),...]
S^3: [(1),(0,3),(0,3,3),(1,6,0,6),(3,6,3,3,9),...]
S^4: [(1),(0,4),(0,6,4),(4,12,1,16),(6,16,12,12,12),...]
S^5: [(1),(0,5),(0,10,5),(10,20,5,35),(11,40,30,35,35),...]
S^6: [(1),(0,6),(0,15,6),(20,30,15,66),(21,90,61,90,126),...]
...
then the sums of the above grouped terms (in parenthesis)
form the initial terms of the rows of table A162424:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,2,3,4,7,7,8,11,13,13,16,15,19,22,21,23,22,...
1,3,6,13,24,34,49,69,94,117,148,174,211,249,...
1,4,10,33,68,123,226,342,547,778,1071,1412,...
1,5,15,70,171,385,836,1485,2630,4271,6590,...
1,6,21,131,388,1073,2674,5634,11173,20379,...
1,7,28,224,806,2709,7749,19055,42770,87773,...
1,8,36,358,1556,6303,20792,58846,150169,346748,...
...
The antidiagonal sums of the above table forms this sequence.
PROG
(PARI) {a(n)=local(S=sum(m=0, n+1, x^((m+1)*(m+2)/2-1))+O(x^((n+1)*(n+2)/2))); sum(k=0, n, sum(m=k*(k+1)/2, k*(k+1)/2+k, polcoeff(S^(n-k), m)))}
CROSSREFS
Sequence in context: A348847 A018536 A337673 * A344491 A028497 A197244
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 03 2009
STATUS
approved