OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..254
FORMULA
a(n) = Sum_{m=n(n+1)/2..n(n+1)/2+n} [x^m] S(x)^3 for n>=0 where S(x) = Sum_{n>=0} x^(n(n+1)/2).
EXAMPLE
The coefficients in the cube of the series:
S = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
begin: [(1),(3,3),(4,6,3),(6,9,3,7),(9,6,9,9,6),(6,15,9,7,12,3),...];
the sums of the grouped coefficients yield the initial terms of this sequence.
MATHEMATICA
t[n_, k_] := Module[{s = Sum[x^(m*(m+1)/2), {m, 0, k+1}] + O[x]^((k+1)*(k+2)/2)}, k*(k+1)/2+k}]]; Table[t[3, k], {k, 0, 48}] (* Jean-François Alcover, Nov 18 2013 *)
PROG
(PARI) {a(n)=local(S=sum(m=0, n+1, x^(m*(m+1)/2))+O(x^((n+1)*(n+2)/2))); sum(m=n*(n+1)/2, n*(n+1)/2+n, polcoeff(S^3, m))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 03 2009
STATUS
approved