login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162432
Row 3 of table A162430.
7
1, 6, 13, 25, 39, 52, 81, 97, 129, 154, 187, 234, 250, 321, 337, 406, 468, 493, 579, 613, 699, 766, 811, 918, 979, 1056, 1141, 1212, 1357, 1408, 1485, 1639, 1698, 1810, 1908, 2050, 2152, 2250, 2398, 2523, 2629, 2770, 2934, 2986, 3219, 3280, 3522, 3598, 3739
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{m=n(n+1)/2..n(n+1)/2+n} [x^m] S(x)^3 for n>=0 where S(x) = Sum_{n>=0} x^(n(n+1)/2).
EXAMPLE
The coefficients in the cube of the series:
S = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
begin: [(1),(3,3),(4,6,3),(6,9,3,7),(9,6,9,9,6),(6,15,9,7,12,3),...];
the sums of the grouped coefficients yield the initial terms of this sequence.
MATHEMATICA
t[n_, k_] := Module[{s = Sum[x^(m*(m+1)/2), {m, 0, k+1}] + O[x]^((k+1)*(k+2)/2)}, k*(k+1)/2+k}]]; Table[t[3, k], {k, 0, 48}] (* Jean-François Alcover, Nov 18 2013 *)
PROG
(PARI) {a(n)=local(S=sum(m=0, n+1, x^(m*(m+1)/2))+O(x^((n+1)*(n+2)/2))); sum(m=n*(n+1)/2, n*(n+1)/2+n, polcoeff(S^3, m))}
CROSSREFS
Sequence in context: A058535 A131833 A101736 * A117072 A081395 A343007
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 03 2009
STATUS
approved