|
|
A081395
|
|
a(n) is the smallest value of k such that number of non-unitary prime divisors of k-th Catalan number, A000108(k) = C(2*k,k)/(k+1) equals n.
|
|
2
|
|
|
1, 6, 13, 25, 72, 96, 182, 320, 481, 923, 1018, 1321, 1323, 1670, 3457, 3455, 3472, 3464, 3462, 3469, 8222, 9991, 12163, 15838, 17665, 18313, 18480, 19458, 19464, 29708, 36787, 36796, 36789, 40048, 43603, 47210, 47521, 61653, 61675, 80722, 87117, 87120, 92958, 93181, 93186, 93187
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
n=6: a(6)=182, C(364,182)/183 has 6 non-unitary prime divisors: {2,3,7,11,17,19} and 182 is the smallest.
|
|
MATHEMATICA
|
seq[len_, kmax_] := Module[{s = Table[0, {len}], k = 1, c = 0, i}, While[c < len && k < kmax, i = Count[FactorInteger[CatalanNumber[k]][[;; , 2]], _?(# > 1 &)] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = k]; k++]; TakeWhile[s, # > 0 &]]; seq[20, 10^4] (* Amiram Eldar, May 15 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|