login
A081392
Numbers k such that the central binomial coefficient C(k, floor(k/2)) has only one prime divisor whose exponent is greater than one.
0
6, 9, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 31, 32, 33, 35, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62, 65, 67, 72, 73, 74, 79, 107, 108, 109, 110, 113, 114, 115, 116, 131, 159, 219, 220, 271, 319, 341, 342, 1567, 1568, 1571, 1572
OFFSET
1,1
COMMENTS
As expected, the (single) non-unitary prime divisors for C(2k, k) and C(k, floor(k/2)) or for Catalan numbers equally come from the smallest prime(s).
Numbers k such that A001405(k) is in A190641. - Michel Marcus, Jul 30 2017
a(56) > 5*10^6 if it exists. - David A. Corneth, Apr 03 2021
EXAMPLE
For k=341, binomial(341,170) = 2*2*2*2*M, where M is a squarefree product of 48 further prime factors.
MATHEMATICA
pde1Q[n_]:=Length[Select[FactorInteger[Binomial[n, Floor[n/2]]], #[[2]]> 1&]] == 1; Select[Range[1600], pde1Q] (* Harvey P. Dale, Jan 21 2019 *)
PROG
(PARI) isok(n) = my(f=factor(binomial(n, n\2))); #select(x->(x>1), f[, 2]) == 1; \\ Michel Marcus, Jul 30 2017
(PARI) is(n) = { my(nf2 = n\2, nmnf2 = n-nf2, t); forprime(p = 2, n, if(val(n, p) - val(nf2, p) - val(nmnf2, p) > 1, t++; if(t > 1, return(0) ) ) ); t==1 }
val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Apr 03 2021
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Mar 27 2003
EXTENSIONS
a(52)-a(55) from Michel Marcus, Jul 30 2017
STATUS
approved