Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 03 2021 22:01:58
%S 6,9,12,13,14,15,16,18,20,21,22,24,31,32,33,35,39,41,42,43,44,55,56,
%T 57,58,59,60,61,62,65,67,72,73,74,79,107,108,109,110,113,114,115,116,
%U 131,159,219,220,271,319,341,342,1567,1568,1571,1572
%N Numbers k such that the central binomial coefficient C(k, floor(k/2)) has only one prime divisor whose exponent is greater than one.
%C As expected, the (single) non-unitary prime divisors for C(2k, k) and C(k, floor(k/2)) or for Catalan numbers equally come from the smallest prime(s).
%C Numbers k such that A001405(k) is in A190641. - _Michel Marcus_, Jul 30 2017
%C a(56) > 5*10^6 if it exists. - _David A. Corneth_, Apr 03 2021
%e For k=341, binomial(341,170) = 2*2*2*2*M, where M is a squarefree product of 48 further prime factors.
%t pde1Q[n_]:=Length[Select[FactorInteger[Binomial[n,Floor[n/2]]],#[[2]]> 1&]] == 1; Select[Range[1600],pde1Q] (* _Harvey P. Dale_, Jan 21 2019 *)
%o (PARI) isok(n) = my(f=factor(binomial(n, n\2))); #select(x->(x>1), f[,2]) == 1; \\ _Michel Marcus_, Jul 30 2017
%o (PARI) is(n) = { my(nf2 = n\2, nmnf2 = n-nf2, t); forprime(p = 2, n, if(val(n, p) - val(nf2, p) - val(nmnf2, p) > 1, t++; if(t > 1, return(0) ) ) ); t==1 }
%o val(n, p) = my(r=0); while(n, r+=n\=p); r \\ _David A. Corneth_, Apr 03 2021
%Y Cf. A000108, A000984, A001405, A046098, A080664, A081386-A081391, A190641.
%K nonn,more
%O 1,1
%A _Labos Elemer_, Mar 27 2003
%E a(52)-a(55) from _Michel Marcus_, Jul 30 2017