login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081386
Number of unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of those prime factors in C(2n,n), whose exponent equals one.
8
1, 2, 1, 3, 1, 3, 3, 4, 4, 4, 5, 5, 4, 3, 5, 7, 6, 7, 7, 8, 9, 9, 6, 7, 7, 7, 8, 11, 12, 11, 11, 11, 12, 12, 12, 13, 13, 13, 11, 13, 12, 14, 13, 13, 15, 14, 14, 14, 15, 16, 16, 16, 17, 19, 18, 17, 18, 19, 18, 19, 18, 18, 18, 20, 18, 21, 22, 20, 20, 20, 20, 20, 20, 19, 21, 21, 24, 23
OFFSET
1,2
FORMULA
a(n) = A056169(A000984(n)).
EXAMPLE
n=10: C(20,10) = 184756 = 2*2*11*13*17*19; unitary-p-divisors = {11,13,17,19}, so a(10)=4.
MATHEMATICA
Table[Function[m, Count[Divisors@ m, k_ /; And[PrimeQ@ k, GCD[k, m/k] == 1]]]@ Binomial[2 n, n], {n, 50}] (* Michael De Vlieger, Dec 17 2016 *)
PROG
(PARI) a(n) = my(f=factor(binomial(2*n, n))); sum(k=1, #f~, f[k, 2] == 1); \\ Michel Marcus, Dec 18 2016
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 27 2003
STATUS
approved