login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081383
Least x = a(n) such that number of common prime factors (ignoring multiplicity) of sigma(x) = A000203(x) and phi(x) = A000010(x) equals n.
3
3, 14, 209, 3596, 41624, 2003639, 24206049, 2562857198, 57721363052
OFFSET
1,1
COMMENTS
a(10) <= 6804704928496. - Donovan Johnson, Jun 15 2013
FORMULA
a(n) = min{x: A081396(x) = n}.
EXAMPLE
x = 209: sigma(209) = 240 = 2^4*3*5, phi(209) = 180 = 2^2*3^2*5, common factor set = {2,3,5}, so a(3) = 209.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] t=Table[0, {10}]; Do[s=Length[Intersection[ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[s<11&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
PROG
(PARI) a(n)=my(k=prod(i=1, n, prime(i))); while(omega(gcd(sigma(k), eulerphi(k)))!=n, k++); k \\ Charles R Greathouse IV, Feb 14 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Mar 28 2003
EXTENSIONS
a(6)-a(8) from Donovan Johnson, May 24 2009
a(9) from Donovan Johnson, Jun 14 2013
STATUS
approved