OFFSET
1,2
COMMENTS
Number of self-complementary equivalence classes under the group C_{2^n} of all 2^n complementations of variables. - R. J. Mathar, Apr 14 2010
The next term (a(10)) has 155 digits. - Harvey P. Dale, Jul 27 2011
REFERENCES
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561. [Annotated scanned copy]
FORMULA
a(n) = 2^(2^(n-1)) * (2^n-1) / 2^n. - Zerinvary Lajos, Oct 24 2006, corrected by R. J. Mathar, Apr 14 2010
MAPLE
a:=n->sum(((fermat(n)-1))/2^(j+1), j=0..n): seq(a(n), n=0..8); # Zerinvary Lajos, Oct 24 2006
MATHEMATICA
Table[2^(2^(n-1))(2^n-1)/2^n, {n, 10}] (* Harvey P. Dale, Jul 27 2011 *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved