login
A168590
G.f.: exp( Sum_{n>=1} A168591(n)*x^n/n ), where A168591(n) = sum of the n-th power of the trinomial coefficients in row n of triangle A027907.
4
1, 3, 14, 310, 71399, 153056789, 2826352872319, 445742192193898313, 602479884829000885595175, 7000510736697461064666950774905, 701725717683874683612335083605682943282
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 3*x + 14*x^2 + 310*x^3 + 71399*x^4 +...
log(A(x)) = 3*x + 19*x^2/2 + 831*x^3/3 + 281907*x^4/4 +...+ A168591(n)*x^n/n +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, polcoeff((1+x+x^2)^m, k)^m)*x^m/m) +x*O(x^n)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2009
STATUS
approved