login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101736 Indices of primes in sequence defined by A(0) = 47, A(n) = 10*A(n-1) + 17 for n > 0. 1
0, 1, 6, 13, 24, 115, 426, 594, 636, 775, 1705, 16627, 55557 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numbers n such that (440*10^n - 17)/9 is prime.

Numbers n such that digit 4 followed by n >= 0 occurrences of digit 8 followed by digit 7 is prime.

Numbers corresponding to terms <= 775 are certified primes.

a(14) > 10^5. - Robert Price, Jun 05 2015

REFERENCES

Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

LINKS

Table of n, a(n) for n=1..13.

Makoto Kamada, Prime numbers of the form 488...887.

Index entries for primes involving repunits.

FORMULA

a(n) = A102999(n) - 1.

EXAMPLE

487 is prime, hence 1 is a term.

MATHEMATICA

For[n=0, n<= 3000, n++, If[PrimeQ[(440*10^n - 17)/9], Print[n]]] (Steinerberger)

PROG

(PARI) a=47; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+17)

(PARI) for(n=0, 1500, if(isprime((440*10^n-17)/9), print1(n, ", ")))

CROSSREFS

Cf. A000533, A002275, A102999.

Sequence in context: A032528 A058535 A131833 * A162432 A117072 A081395

Adjacent sequences:  A101733 A101734 A101735 * A101737 A101738 A101739

KEYWORD

nonn,hard

AUTHOR

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004

EXTENSIONS

a(11) from Stefan Steinerberger, Feb 04 2006

a(12) from Kamada data by Ray Chandler, May 01 2015

a(13) from Robert Price, Jun 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)