|
|
A058535
|
|
McKay-Thompson series of class 18E for Monster.
|
|
2
|
|
|
1, 0, 6, 13, 24, 42, 73, 120, 192, 299, 456, 684, 1007, 1464, 2100, 2976, 4176, 5802, 7993, 10920, 14808, 19946, 26688, 35496, 46944, 61752, 80826, 105286, 136536, 176304, 226725, 290448, 370704, 471467, 597600, 755028, 950980, 1194216
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,3
|
|
LINKS
|
|
|
FORMULA
|
Expansion of A + 2 + 6/A, where A = (eta(q)^2*eta(q^6)*eta(q^9)/(eta(q^2) *eta(q^3)*eta(q^18)^2)), in powers of q. - G. C. Greubel, Jun 18 2018
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
|
|
EXAMPLE
|
T18E = 1/q + 6*q + 13*q^2 + 24*q^3 + 42*q^4 + 73*q^5 + 120*q^6 + 192*q^7 + ...
|
|
MATHEMATICA
|
eta[q_]:= q^(1/24)*QPochhammer[q]; e18D3:= (eta[q]^2*eta[q^6]*eta[q^9]/( eta[q^2]*eta[q^3]*eta[q^18]^2)); a := CoefficientList[Series[2 + e18D3 + 6/e18D3, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
|
|
PROG
|
(PARI) q='q+O('q^50); A = (eta(q)^2*eta(q^6)*eta(q^9)/(eta(q^2)*eta(q^3) *eta(q^18)^2))/q; Vec(A + 2 + 6/A) \\ G. C. Greubel, Jun 18 2018
|
|
CROSSREFS
|
Cf. A128517 (same sequence except for n=0).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|