login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235450 A strong divisibility sequence associated with the algebraic integer 2 + 3*sqrt(3). 2
1, 6, 13, 24, 1, 234, 1, 48, 13, 66, 1, 34632, 1, 6, 13, 96, 1, 702, 1, 264, 13, 6, 1, 346320, 1, 6, 13, 24, 59, 2574, 1, 192, 13, 6, 71, 7584408, 1, 6, 169, 16368, 1, 234, 1, 24, 13, 282, 1, 4848480, 1, 66, 13, 24, 1, 2106, 1, 48, 13, 354, 1, 23238072, 1, 6, 13, 384, 1, 234, 1, 24, 13, 4686, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max {integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 2 + 3*sqrt(3). For other examples see A230368, A230369 and (conjecturally) A082630.

LINKS

Table of n, a(n) for n=1..71.

J. H. Silverman, Divisibility sequences and powers of algebraic integers, Documenta Mathematica, Extra Volume: John H. Coates' Sixtieth Birthday (2006) 711-727

FORMULA

a(n) = max {integer d : (2 + 3*sqrt(3))^n  == 1 (mod d)}.

a(n) = gcd( 1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2), ((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3)) ).

MAPLE

seq(gcd( expand(1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2)), expand(((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3))) ), n = 1 .. 80);

CROSSREFS

Cf. A082630, A230368, A230369.

Sequence in context: A293504 A194126 A296310 * A032528 A058535 A131833

Adjacent sequences:  A235447 A235448 A235449 * A235451 A235452 A235453

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Jan 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 04:06 EDT 2021. Contains 345367 sequences. (Running on oeis4.)