The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192762 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. 5
 0, 1, 6, 13, 26, 47, 82, 139, 232, 383, 628, 1025, 1668, 2709, 4394, 7121, 11534, 18675, 30230, 48927, 79180, 128131, 207336, 335493, 542856, 878377, 1421262, 2299669, 3720962, 6020663, 9741658, 15762355, 25504048, 41266439, 66770524 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n+4 for n>0, where p(0,x)=1.  For discussions of polynomial reduction, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(3*x^2-3*x-1) / ((x-1)^2*(x^2+x-1)). [Colin Barker, Dec 08 2012] MATHEMATICA p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 4; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A022319 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192762 *) CROSSREFS Cf. A192744, A192232, A022319 (first differences). Sequence in context: A117072 A081395 A343007 * A268721 A183337 A301687 Adjacent sequences:  A192759 A192760 A192761 * A192763 A192764 A192765 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 17:43 EDT 2021. Contains 346273 sequences. (Running on oeis4.)