login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^floor(n/2). Powers of 3 repeated.
36

%I #82 Oct 28 2024 12:14:59

%S 1,1,3,3,9,9,27,27,81,81,243,243,729,729,2187,2187,6561,6561,19683,

%T 19683,59049,59049,177147,177147,531441,531441,1594323,1594323,

%U 4782969,4782969,14348907,14348907,43046721,43046721,129140163,129140163,387420489,387420489,1162261467

%N a(n) = 3^floor(n/2). Powers of 3 repeated.

%C a(n) is the Parker sequence for the automorphism group of the limit of the class of oriented graphs; a(n) counts the finite circulant structures in that class. - _N-E. Fahssi_, Feb 18 2008

%C Complete sequence: every positive integer is the sum of members of this sequence. - _Charles R Greathouse IV_, Jul 19 2012

%C Conjecture: a(n+1) is the number of distinct subsets S of {0,1,2,...,n} such that the sumset S+S does not contain n. - _Michael Chu_, Oct 05 2021. _Andrew Howroyd_, Nov 20 2021: The conjecture is true: If there are m pairs of numbers that add to n then inclusion/exclusion gives sum(k=0, m, binomial(m,k)*(-1)^k*2^(2*m-2*k)) as the number of sets that don't contain any of those pairs which equals 3^m. For even n , n/2 cannot be included in any set.

%H Vincenzo Librandi, <a href="/A108411/b108411.txt">Table of n, a(n) for n = 0..3000</a>

%H D. A. Gewurz and F. Merola, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Gewurz/gewurz5.html">Sequences realized as Parker vectors of oligomorphic permutation groups</a>, J. Integer Seq., 6 (2003), 03.1.6.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,3).

%F O.g.f.: (1+x)/(1-3*x^2). - _R. J. Mathar_, Apr 01 2008

%F a(n) = 3^(n/2)*((1+(-1)^n)/2+(1-(-1)^n)/(2*sqrt(3))). - _Paul Barry_, Nov 12 2009

%F a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011

%F a(n) = (-1)^n*sum(A158020(n,k)*2^k, 0<=k<=n). - _Philippe Deléham_, Dec 01 2011

%F a(n) = sum(A152815(n,k)*2^k, 0<=k<=n). - _Philippe Deléham_, Apr 22 2013

%F a(n) = 3^A004526(n). - _Michel Marcus_, Aug 30 2014

%F E.g.f.: cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3). - _Stefano Spezia_, Dec 31 2022

%e a(6) = 27; 3^floor(6/2) = 3^floor(3) = 3^3 = 27.

%p A108411:=n->3^floor(n/2); seq(A108411(k), k=0..100); # _Wesley Ivan Hurt_, Nov 01 2013

%t Table[3^Floor[n/2], {n,0,100}] (* _Wesley Ivan Hurt_, Nov 01 2013 *)

%o (PARI) a(n)=3^floor(n/2);

%o (Magma) [3^Floor(n/2): n in [0..50]]; // _Vincenzo Librandi_, Aug 17 2011

%o (Haskell)

%o a108411 = (3 ^) . flip div 2 -- _Reinhard Zumkeller_, May 01 2014

%o (Python)

%o def A108411(n): return 3**(n>>1) # _Chai Wah Wu_, Oct 28 2024

%Y Essentially the same as A056449 and A162436.

%Y Cf. A000244, A004526, A016116, A152815, A158020.

%K nonn,easy

%O 0,3

%A _Ralf Stephan_, Jun 05 2005

%E Incorrect formula removed by _Michel Marcus_, Oct 06 2021