login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365377
Number of subsets of {1..n} without a subset summing to n.
17
0, 1, 2, 3, 6, 9, 17, 26, 49, 72, 134, 201, 366, 544, 984, 1436, 2614, 3838, 6770, 10019, 17767, 25808, 45597, 66671, 116461, 169747, 295922, 428090, 750343, 1086245, 1863608, 2721509, 4705456, 6759500, 11660244, 16877655, 28879255, 41778027, 71384579, 102527811, 176151979
OFFSET
0,3
LINKS
FORMULA
a(n) = 2^n-A365376(n). - Chai Wah Wu, Sep 09 2023
EXAMPLE
The a(1) = 1 through a(6) = 17 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{1,2} {4} {4}
{2,3} {1,2} {5}
{1,3} {1,2}
{2,4} {1,3}
{3,4} {1,4}
{2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{1,3,4}
{2,3,5}
{3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], n]&]], {n, 0, 10}]
PROG
(PARI) isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1);
a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
(Python)
from itertools import combinations, chain
from sympy.utilities.iterables import partitions
def A365377(n):
if n == 0: return 0
nset = set(range(1, n+1))
s, c = [set(p) for p in partitions(n, m=n, k=n) if max(p.values(), default=1) == 1], 1
for a in chain.from_iterable(combinations(nset, m) for m in range(2, n+1)):
if sum(a) >= n:
aset = set(a)
for p in s:
if p.issubset(aset):
c += 1
break
return (1<<n)-c # Chai Wah Wu, Sep 09 2023
CROSSREFS
The complement w/ re-usable parts is A365073.
The complement is counted by A365376.
The version with re-usable parts is A365380.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.
A365381 counts subsets of {1..n} with a subset summing to k.
Sequence in context: A320271 A056532 A079289 * A048811 A142155 A092351
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 08 2023
EXTENSIONS
a(16)-a(27) from Michel Marcus, Sep 09 2023
a(28)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
More terms from David A. Corneth, Sep 10 2023
STATUS
approved