OFFSET
0,3
LINKS
David A. Corneth, Table of n, a(n) for n = 0..60
FORMULA
a(n) = 2^n-A365376(n). - Chai Wah Wu, Sep 09 2023
EXAMPLE
The a(1) = 1 through a(6) = 17 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{1,2} {4} {4}
{2,3} {1,2} {5}
{1,3} {1,2}
{2,4} {1,3}
{3,4} {1,4}
{2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{1,3,4}
{2,3,5}
{3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], n]&]], {n, 0, 10}]
PROG
(PARI) isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1);
a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
(Python)
from itertools import combinations, chain
from sympy.utilities.iterables import partitions
def A365377(n):
if n == 0: return 0
nset = set(range(1, n+1))
s, c = [set(p) for p in partitions(n, m=n, k=n) if max(p.values(), default=1) == 1], 1
for a in chain.from_iterable(combinations(nset, m) for m in range(2, n+1)):
if sum(a) >= n:
aset = set(a)
for p in s:
if p.issubset(aset):
c += 1
break
return (1<<n)-c # Chai Wah Wu, Sep 09 2023
CROSSREFS
The complement w/ re-usable parts is A365073.
The complement is counted by A365376.
The version with re-usable parts is A365380.
A000124 counts distinct possible sums of subsets of {1..n}.
A365381 counts subsets of {1..n} with a subset summing to k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 08 2023
EXTENSIONS
a(16)-a(27) from Michel Marcus, Sep 09 2023
a(28)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
More terms from David A. Corneth, Sep 10 2023
STATUS
approved