login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subsets of {1..n} without a subset summing to n.
17

%I #36 Sep 11 2023 02:31:43

%S 0,1,2,3,6,9,17,26,49,72,134,201,366,544,984,1436,2614,3838,6770,

%T 10019,17767,25808,45597,66671,116461,169747,295922,428090,750343,

%U 1086245,1863608,2721509,4705456,6759500,11660244,16877655,28879255,41778027,71384579,102527811,176151979

%N Number of subsets of {1..n} without a subset summing to n.

%H David A. Corneth, <a href="/A365377/b365377.txt">Table of n, a(n) for n = 0..60</a>

%F a(n) = 2^n-A365376(n). - _Chai Wah Wu_, Sep 09 2023

%e The a(1) = 1 through a(6) = 17 subsets:

%e {} {} {} {} {} {}

%e {1} {1} {1} {1} {1}

%e {2} {2} {2} {2}

%e {3} {3} {3}

%e {1,2} {4} {4}

%e {2,3} {1,2} {5}

%e {1,3} {1,2}

%e {2,4} {1,3}

%e {3,4} {1,4}

%e {2,3}

%e {2,5}

%e {3,4}

%e {3,5}

%e {4,5}

%e {1,3,4}

%e {2,3,5}

%e {3,4,5}

%t Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#],n]&]],{n,0,10}]

%o (PARI) isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1);

%o a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ _Michel Marcus_, Sep 09 2023

%o (Python)

%o from itertools import combinations, chain

%o from sympy.utilities.iterables import partitions

%o def A365377(n):

%o if n == 0: return 0

%o nset = set(range(1,n+1))

%o s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1

%o for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):

%o if sum(a) >= n:

%o aset = set(a)

%o for p in s:

%o if p.issubset(aset):

%o c += 1

%o break

%o return (1<<n)-c # _Chai Wah Wu_, Sep 09 2023

%Y The complement w/ re-usable parts is A365073.

%Y The complement is counted by A365376.

%Y The version with re-usable parts is A365380.

%Y A000009 counts sets summing to n, multisets A000041.

%Y A000124 counts distinct possible sums of subsets of {1..n}.

%Y A124506 appears to count combination-free subsets, differences of A326083.

%Y A364350 counts combination-free strict partitions, complement A364839.

%Y A365046 counts combination-full subsets, differences of A364914.

%Y A365381 counts subsets of {1..n} with a subset summing to k.

%Y Cf. A007865, A085489, A088809, A093971, A103580, A151897, A236912, A237113, A237668, A326080, A364349, A364534.

%K nonn

%O 0,3

%A _Gus Wiseman_, Sep 08 2023

%E a(16)-a(27) from _Michel Marcus_, Sep 09 2023

%E a(28)-a(32) from _Chai Wah Wu_, Sep 09 2023

%E a(33)-a(35) from _Chai Wah Wu_, Sep 10 2023

%E More terms from _David A. Corneth_, Sep 10 2023