

A321891


Prime numbers of the form p^3 + q, where p and q are primes.


0



11, 13, 19, 29, 31, 37, 61, 67, 79, 97, 109, 127, 139, 157, 181, 199, 241, 271, 277, 367, 397, 409, 439, 457, 487, 499, 571, 577, 601, 607, 661, 691, 709, 727, 751, 769, 829, 919, 937, 991, 1021, 1039, 1069, 1117, 1171, 1201, 1231, 1237, 1291, 1297, 1327, 1381
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Union of A048636 and A092402.  Michel Marcus, Nov 21 2018


LINKS

Table of n, a(n) for n=1..52.


EXAMPLE

37 is prime and 37 = 2^3 + 29, where 2 and 29 are primes, therefore 37 is a term.


MATHEMATICA

nmax=4; Select[Union[Prime[Range[nmax]]^3 + 2, Prime[Range[Prime[nmax]^3]] + 8], PrimeQ] (* Amiram Eldar, Nov 21 2018 *)


PROG

(Minizinc)
include "globals.mzn";
int: n = 2;
int: max_val = 1200000;
array[1..n+1] of var 2..max_val: x;
% primes between 2..max_valset of int:
prime = 2..max_val diff { i  i in 2..max_val, j in 2..ceil(sqrt(i)) where i mod j = 0} ;
set of int: primes; primes = prime union {2};
solve satisfy;
constraint all_different(x) /\ x[1] in primes /\ x[2] in primes /\ x[3] in primes /\
pow(x[1], 3)+pow(x[2], 1)= x[3] ;
output [ show(x)]


CROSSREFS

Cf. A048636, A092402.
Sequence in context: A215504 A109650 A284037 * A153421 A050265 A176871
Adjacent sequences: A321888 A321889 A321890 * A321892 A321893 A321894


KEYWORD

nonn


AUTHOR

Pierandrea Formusa, Nov 20 2018


EXTENSIONS

More terms from Amiram Eldar, Nov 21 2018


STATUS

approved



