login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321926
Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in p(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and p is power sum symmetric functions.
0
1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 2, 1, 1, 0, -1, 1, -1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, 2, 3, 3, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, 2, 1, -1, 0, -2
OFFSET
1,13
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 1 -1
(11): 1 1
.
(3): 1 -1 1
(21): 1 -1
(111): 1 2 1
.
(4): 1 -1 1 -1
(22): 1 2 -1 -1 1
(31): 1 -1 1
(211): 1 1 -1 -1
(1111): 1 2 3 3 1
.
(5): 1 -1 1 -1 1
(41): 1 -1 1 -1
(32): 1 -1 1 -1 1 -1
(221): 1 1 1 -2 1
(311): 1 1 -1 -1 1 1
(2111): 1 2 1 -1 -2 -1
(11111): 1 4 5 5 6 4 1
For example, row 14 gives: p(32) = s(5) + s(32) - s(41) - s(221) + s(2111) - s(11111).
CROSSREFS
Row sums are A317552. This is a regrouping of the triangle A321765.
Sequence in context: A355905 A368183 A367905 * A037870 A250205 A326017
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved