login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321926 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in p(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and p is power sum symmetric functions. 0
1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 2, 1, 1, 0, -1, 1, -1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, 2, 3, 3, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, 2, 1, -1, 0, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,13

COMMENTS

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

LINKS

Table of n, a(n) for n=1..80.

Wikipedia, Symmetric polynomial

EXAMPLE

Tetrangle begins (zeroes not shown):

  (1):  1

.

  (2):   1 -1

  (11):  1  1

.

  (3):    1 -1  1

  (21):   1    -1

  (111):  1  2  1

.

  (4):     1    -1  1 -1

  (22):    1  2 -1 -1  1

  (31):    1 -1        1

  (211):   1     1 -1 -1

  (1111):  1  2  3  3  1

.

  (5):      1 -1        1 -1  1

  (41):     1    -1  1       -1

  (32):     1 -1  1 -1     1 -1

  (221):    1     1  1 -2     1

  (311):    1  1 -1 -1     1  1

  (2111):   1  2  1 -1    -2 -1

  (11111):  1  4  5  5  6  4  1

For example, row 14 gives: p(32) = s(5) + s(32) - s(41) - s(221) + s(2111) - s(11111).

CROSSREFS

Row sums are A317552. This is a regrouping of the triangle A321765.

Cf. A005651, A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935.

Sequence in context: A135341 A033665 A104234 * A037870 A250205 A326017

Adjacent sequences:  A321923 A321924 A321925 * A321927 A321928 A321929

KEYWORD

sign,tabf

AUTHOR

Gus Wiseman, Nov 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 00:25 EST 2019. Contains 329083 sequences. (Running on oeis4.)